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ABSTRACT

Many real-world applications contain complex optimization prob-
lems with several conflicting objectives. Finding a solution which
can satisfy all the objectives is usually a challenging task for op-
timization algorithms. When dealing with these complex multi-
objective problems, decision-makers want to find the best trade-
off between the conflicting objectives. Another challenge occurs
in problems where multiple configurations of the input variables
might yield the same objective function values. Such problems are
called multimodal problems. For a decision maker, it might be of
importance to obtain enough information about all the alternative
optimal solutions that reach the same objective value. Traditionally,
Evolutionary Algorithms make use selection processes based only
on objective function values, which might be a disadvantage when
faced with multimodal problems. In this article, we present two
operators to use in multimodal multi-objective algorithms, namely
a modified crowding distance operator and a neighbourhood Poly-
nomial mutation, which take into account the distribution of so-
lution in the decision space at run-time. Our experimental results
demonstrate that the proposed operators are able to outperform the
performance of a state-of-the-art method on six current multimodal
benchmark functions.
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1 INTRODUCTION

In the field of multi-objective optimization algorithms, there is a
concept of multi-modality that is related to existence of distinct
set of solutions in decision space known as Pareto-Set (PS) that
is mapped to the same set of solutions in objective space known
as Pareto-Front (PF). The main focus of this work is to find and
maintain all the sub-set of solutions for PS in multi-modal multi-
objective problems. In recent years, there has been growing interests
on finding multi-modal solutions for multi-objective optimization
problems [5, 8]. In order to find all the sub-set of solutions in deci-
sion space, the diversity of the solutions in decision space needs
to increase, through niching techniques such as the Crowding dis-
tance method. This well-known niching approach is already used
in the literature to improve the diversity of solutions in objective
space [2]. Although this procedure may lead to a better approxi-
mation of the PF, preservation of all the solution in the PS is not
guaranteed. Therefore, we adopt the concept of crowding distance
in both spaces to obtain a better approximation of the PS and PF.
This approach is called WSCD as it is computed as the weighted
sum of the crowding distance in objective and decision space.

It is a modified version of the crowding distance approach which
was applied in the Omni-optimizer algorithm [3], as well as Mo-
Ring-PSO-SCD algorithm [8]. The proposed change lies in the as-
signment of a final crowding distance value for each of the solutions.
In the proposed method the obtained final crowding distance value
is based on the weighted sum, where different weights are associ-
ated with the crowding distance in objective and decision space.
The presented method together with an adopted version of the
polynomial mutation operator based on the concept provided by
Qu et al. in 2012 [1] is applied on the NSGA-II algorithm as an
example.

2 PROPOSED METHOD

In this section, we briefly explain the NSGA-II with Weighted Sum
Crowding Distance and Neighborhood Mutation (NSGA-II-WSCD-
NBM) algorithm. The major modification of this algorithm is pro-
vided by (1) applying crowding distance as a selection scheme in
both decision and objective space and (2) applying a neighbor-
hood structure on polynomial mutation. For the WSCD method,
the crowding distance values for each solution are computed both
in (first) objective and (then) decision spaces. The final crowding
distance value for each the solutions are obtained as a weighted
sum, using pre-defined weights assigned to crowding distance val-
ues in both spaces. To perform the second modification we applied
neighborhood concept on polynomial mutation that is considering
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as one of the most important operators [4]. In this method, the
adjacent solutions are categorized into groups, and the mutation
operator is applied on each of these groups.

The main roll of the adopted mutation operator is to increase di-
versity of solutions and help get rid of the local optima trap by
providing the possibility of doing more mutations for the solutions
located in denser areas. Furthermore, the modified crowding dis-
tance method is applied to maintain the different sets of solutions
that are already found.

3 EXPERIMENTS

Given the limitation on article length, the experiment settings will
be listed without any further details. The reported result are ob-
tained through 31 independent runs where the population is set
to 100. Furthermore, in the present work, weights attributed to
the crowding distances in the decision and objective space are set
to the same value, i.e. C; = Cy = 0.5. We use the NSGA-II and
Mo-Ring-PSO-SCD as a state-of-the-art algorithm and compare
them with the proposed algorithm. We apply the algorithms on
6 test different test problems with to evaluate the performance of
the presented algorithms [6, 8]. The codes for NSGA-II is provided
by Matlab-based platform, "PlatEMO" [7]. Moreover, we make the
experimental results for Mo-Ring-PSO-SCD according to the source
code provided by the corresponding author [8]. The experimental
results (median and IQR) for the comparison of the used algorithms
concerning PSP performance indicator [8] is shown in Table 1. This
indicator represents the overlap ratio between the obtained solution
set and PS. This indicator is calculated by the division of the Cover
Rate (CV) and the IGDX value [9] PSP = CR/IGDX. In this formula
the CR value represents the maximum spread of the obtained solu-
tions in decision space. A higher CR value shows a better overlap
ratio between the bounding box of the obtained set and the PS.
The Mann-Whitney U statistical test is applied on the obtained
results, to showcase the superiority of the proposed algorithm. A
difference between two results is regarded as significant for values
of p < 0.01. The best values are highlighted in a bold font according
to the outcome of the mentioned test, and significance is shown by
an asterisk in the respective columns. The presented results clearly
point out the enhanced performances of the proposed algorithm
compared to the other approaches, in terms of both the diversity
and convergence of obtained solutions. In order to provide a better
insight the obtained Pareto set and fronts for the problem MMF3
are visualized in Figure 1.

Table 1: PSP values of different algorithms. An asterisk
indicates statistical significance compared to the respective
best algorithm

NSGA-II-WSCD-NBM  Mo-Ring-PSO-SCD  NSGA-II

SSUF1  15.70245 (4.93927E-1) 13.143474 (1.637382) * 9.03637 (1.322887) *
SSUF3  59.214581 (9.175856) 24.840769 (10.041116) * 10.996908 (6.171965) *
MMF3  67.170309 (5.562562) 30.75947 (10.712036) * 12.313134 (6.294302) *
MMF4  23.973064 (2.83035) 21.707866 (2.824505) * 8.726443 (2.44963 *

MMF5
MMF6

8.722547 (3.52325E-1) 7.885011 (5.74091E-1) * 5.250953 (1.623423) *

10.037834 (6.13869E-1) 9.226296 (8.09602E-1) * 4.544513 (1.981098) *
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Figure 1: Obtained solutions in decision and objective space
for MMF3 problem

4 CONCLUSION

To solve multimodal multi-objective optimization problems, we
propose a modified crowding distance and mutation operators and
take NSGA-II algorithm as an example and apply the two proposed
modifications on it. The results demonstrate the superiority of the
proposed algorithm in compared with the state-of-the-art algorithm.
In our future work, we will aim to investigate the effect of different
weights for the WSCD method to find the best combination of these
constants.
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