
Benchmarking Genetic Programming in Dynamic Insider Threat
Detection

Duc C. Le, Malcolm I. Heywood, Nur Zincir-Heywood
Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada

lcd@dal.ca, mheywood@cs.dal.ca, zincir@cs.dal.ca

ABSTRACT
In real world applications, variation in deployment environments,
such as changes in data collection techniques, can affect the effec-
tiveness and/or efficiency of machine learning (ML) systems. In this
work, we investigate techniques to allow a previously trained popu-
lation of Linear Genetic Programming (LGP) insider threat detectors
to adapt to an expanded feature space. Experiments show that ap-
propriate methods can be adopted to enable LGP to incorporate
the new data efficiently, hence reducing computation requirements
and expediting deployment under the new conditions.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation; • Theory of computation→ Genetic pro-
gramming;

KEYWORDS
Insider threat detection, cyber-security, dynamic environment

ACM Reference Format:
Duc C. Le, Malcolm I. Heywood, Nur Zincir-Heywood. 2019. Benchmarking
Genetic Programming in Dynamic Insider Threat Detection. In Genetic and
Evolutionary Computation Conference Companion (GECCO ’19 Companion),
July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3319619.3322029

1 BACKGROUND
Insider threats represent cyber-security problems in which a wide
range of malicious activities are performed from “inside” the orga-
nization. Examples include, data exfiltration, intellectual property
theft, and information system sabotage. Moreover, the dynamics
of a corporate environment introduce additional challenges to in-
sider threat detection. Specifically, it is not possible to assume a
permanent deployment environment, thus changes may emerge
in the application environment(s) and data collection / processing
procedure(s). Of particular interest in this work is the case of new
data sources, e.g new sensor types or new monitoring system, that
provide additional or completely new information, which can be
translated post-processing to new features.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3322029

In the literature, evolutionary computation based approaches
have been proposed for dealing with different types of dynamics
in deployment environments. Particularly in the case of streaming
data, where challenges include data non-stationary, class imbalance
and a limited label budget, GP has been successfully applied by
using suitable sampling and archiving policies [3, 4]. In [2], the
effectiveness of ML methods, including GP, is examined for botnet
detection under botnet evolution conditions. Recently, a technique
is proposed in [6] for outlier detection in feature-evolving data
streams based on streaming random projection and ensemble of
half-space chains.

In this work, we explore methods to allow a previously trained
LGP population to evolve on an expanded feature space, which
not only requires learning from additional features, but also main-
taining previous performance. This is examined through the use of
multiple releases of a publicly available dataset on insider threat.

2 PROBLEM STATEMENT AND PROPOSALS
Problem Statement. As mentioned above, we are interested in

operating under conditions where changes in the deployment envi-
ronment may cause the number of underlying features to change
over time. To formalize the problem, considering at one point in
time, we have a classifier C working on a data with feature set F
to output to a set of categories C. Then changes in environment
and data collection create a different incoming data stream with
feature space F1, where F ⊂ F1. To avoid training a completely
new classifier to accommodate the changes, the challenge is in
evolving C to C ′ working in the new environment, or learn from
new introduced features, F1 \ F .

Learning froman expanded feature space. In assuming a evo-
lutionary based method for addressing the challenge, our underly-
ing premise is that LGP can perform feature construction without
fundamentally invalidating legacy solutions. In fact, LGP has two
basic mechanisms for learning from expanded feature space: (i)
it is a population based approach, where changes in data can be
learned gradually through generations, and (ii) based on the use
of input registers in LGP programs, feature space expansion can
be accommodated by appropriately extending the input register
vector. Though training generations with appropriate changes in
variation operators, especially mutation, new features in F ′\F can
be incorporated into programs, hence allowing a previously trained
population to evolve on an expanded feature space. We explore
the following two elementary methods to re-purpose a previously
trained classifier: (i) adjust, with the same prob., p, the variation
operators to take into account new features in F ′ \ F and (ii) ad-
justing the variation operators with a bias (2 × p) toward selecting
a feature f1 ∈ F1 \ F upon detecting feature space expansion. The
bias is reduced gradually to original prob. after 50 generations.

385

https://doi.org/10.1145/3319619.3322029
https://doi.org/10.1145/3319619.3322029

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Duc C. Le, Malcolm I. Heywood, Nur Zincir-Heywood

0 50 100 150 200 250 300

0.5

0.6

0.7

0.8

0.9

Figure 1: Class-wise detection rates of the populations on
training subsets by number of generations

3 EXPERIMENT AND RESULTS
Experiment. This work employs a publicly available dataset

for testing insider threat mitigation approaches, the CERT insider
threat dataset [1]. Specifically, two releases, 4.2 and 5.2 of the CERT
dataset, hereafter R4.2 and R5.2, are used. Details on data descrip-
tion, data processing, and feature extraction can be found in [5]. On
the number of features, extracted data from R4.2 and R5.2 contains
107 and 190 features, respectively. For training and evaluating LGP,
we use data from the first 50% duration and from a limited set of
users (400) of each release for training, and the rest for testing. The
setting is to reflect real-world application environments, where
ground truth is limited. It is noteworthy that the data is heavily
skewed, where the combined malicious data accounts for only 0.5%
of training data, and 0.2% of testing data. Hence, multi-objective
selection is employed to address two objectives simultaneously:
maximize detection rate (over all classes) and maximize accuracy.
This is done through the use of Pareto ranking. To measure the
performance, detection rates (DR) of normal and malicious classes
in a binary classification task are used. Moreover, to keep a low false
positive rate, the best individual of LGP population post training
is selected with at least 99% training accuracy in all experiments.
Results are estimated by average of 5 runs.

In this experiment, a LGP population as previously trained on
R4.2 is then evolved on R5.2 for 300 generations. Four different
strategies are then investigated for understanding evolution under
feature space expansion (P1,P2,P3,P4). The first 3 populations,
P1,P2, and P3, are evolved from the same original population P

that was trained on R4.2. Population P1 continues evolving the
population with the original (old) feature space F . P2 and P3 are
retrained on R5.2 full feature space F1, as described in the first and
the second methods in § 2. Finally, a population P4 is trained from
scratch on R5.2 as a baseline for comparison.

Initial results. The evolution of populations in terms of class-
wise detection rate on R5.2 and R4.2 training subsets are illustrated
in Figure 1. Table 1 presents test performance on R5.2 after 0, 20,
50, 100, and 300 generations. Based on Figure 1, it is clear that P1−3
was able to maintain the performance that P achieved on R4.2
and evolve from that to adapt to changes in R5.2. Initial results
of P1−3 on R5.2 is better than results accomplished by P4 after
100 generations. From that initial advantage, P1−3 maintain clearly
better results than P4 for at least 200 generations. By just 100
generations, or about 40% of R5.2 training data, populations P2 and

Table 1: Test results of LGP populations trained over an in-
creasing number of generations.

generation Population Normal DR Insider threat DR

0 P,P1−3 98.96 22.35

20

P1 97.97 31.46
P2 97.93 36.57
P3 97.72 36.59

P4 99.95 10.70

50

P1 97.98 35.79
P2 97.98 42.14
P3 98.10 38.40

P4 99.61 14.69

100

P1 97.76 41.63
P2 97.89 49.04
P3 97.90 46.19

P4 99.53 18.25

300

P1 97.46 45.26
P2 97.68 54.99
P3 97.86 52.43

P4 98.08 52.85

P3 were able to obtain nearly 50% insider threat detection rate on
R5.2 test data. Thus, in general, retraining P with adaptation to
R5.2 was able to generate better results than a population trained
from scratch on R5.2. On the three populations that evolve from P,
P1 gives worse results than P2−3. Given enough training time, P4
is also able to surpass P1. This indicates that simply continuing to
train LGP on the old feature space F , it is not possible to make use
of the additional features, F1 \ F , thus new threats go unnoticed.

Comparing results by P2 and P3, P2 gives slightly better results
overall. On one hand, this may indicate that simply incorporating
newly introduced features in normal LGP training mechanism is
enough to learn from new features. On the other hand, other meth-
ods allowing GP to evolve on unseen features could be explored to
improve the performance.

ACKNOWLEDGMENTS
This research is supported by Natural Science and Engineering
Research Council of Canada, and Killam, Mitacs, and Nova Scotia
graduate scholarships. The research is conducted as part of the
Dalhousie NIMS Lab at: https://projects.cs.dal.ca/projectx/.

REFERENCES
[1] CERT and ExactData, LLC. 2016. Insider Threat Test Dataset.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099. (2016).
[2] Fariba Haddadi and A. Nur Zincir-Heywood. 2015. Botnet Detection System

Analysis on the Effect of Botnet Evolution and Feature Representation. In ACM
GECCO Companion ’15. 893–900.

[3] Sara Khanchi, Ali Vahdat, Malcolm I. Heywood, and A. Nur Zincir-Heywood.
2018. On botnet detection with genetic programming under streaming data label
budgets and class imbalance. Swarm and Evolutionary Computation 39 (2018).

[4] Duc C. Le, Sara Khanchi, A. Nur Zincir-Heywood, and Malcolm I. Heywood. 2018.
Benchmarking evolutionary computation approaches to insider threat detection.
In ACM GECCO ’18. 1286–1293.

[5] Duc C. Le and A. Nur Zincir-Heywood. 2019. Machine learning based Insider
Threat Modellingand Detection. In IFIP/IEEE International Symposium on Integrated
Network Management.

[6] Emaad Manzoor, Hemank Lamba, and Leman Akoglu. 2018. xStream: Outlier
Detection in Feature-Evolving Data Streams. In ACM SIGKDD ’18. 1963–1972.

386

	Abstract
	1 Background
	2 Problem Statement and Proposals
	3 Experiment and Results
	Acknowledgments
	References

