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ABSTRACT
Due to difficulties such as multiple local optima and flat landscape,
it is suggested to use global optimization techniques to discover the
global optimum of the auxiliary optimization problem of finding
good Gaussian Processes (GP) hyperparameters. We investigated
the performance of genetic algorithms (GA), particle swarm opti-
mization (PSO), differential evolution (DE), and covariance matrix
adaptation evolution strategy (CMA-ES) for optimizing hyperpa-
rameters of GP. The study was performed on two artificial problems
and also one real-world problem. From the results, we observe that
PSO, CMA-ES, and DE/local-to-best/1 consistently outperformed
two variants of GA and DE/rand/1 with per-generation-dither on
all problems. In particular, CMA-ES is an attractive method since it
is quasi-parameter free and it also demonstrates good exploitative
and explorative power on optimizing the hyperparameters.
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1 INTRODUCTION
Surrogate models have found wide application in the field of science
and engineering as tools that aid various tasks such as optimiza-
tion [9, 10]. Of interest is the Gaussian processes regression (GP)
model [6] (a.k.a. Kriging) which provides the extra uncertainty struc-
ture which is highly useful for error-based surrogate refinement or
Bayesian optimization [7]. Metaheuristics methods are widely used
for training GPmodels due to their capabilities in performing global
optimization. Besides building a single GP model, there are some
occasions where it is required to build multiple GP models. For
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example, it is necessary for surrogate-based memetic algorithms
that use GP to train multiple GP models several times [3, 5]. The
application of GP to big data regression also requires the construc-
tion of multiple GP models, especially in cases where the region is
clustered into several subregions [8, 11]. Although one can choose
any optimizer in hand, we realize that there are no existing studies
regarding the comparison of metaheuristics for GP.

In this paper, we have an interest in studying the impact of the
choice of metaheuristics to the optimization of GP hyperparameters.
We performed this study in a MATLAB environment where we also
used some built-in metaheuristics method from MATLAB. Four test
problems were used in this paper: Sasena function, Hartmann-6
function, four-dimensional blended wing body (BWB) [4] and eight-
dimensional transonic airfoil problem [1]. We added 5% simulated
noises to the algebraic problems.

2 METAHEURISTICS FOR
HYPERPARAMETERS OPTIMIZATION

The algorithms that we compared are: (1) GA1, GA from MATLAB
global optimization toolbox, scattered crossover (default), crossover
probability=0.8 (default), Gaussian mutation (default), (2) GA2, GA
from MATLAB global optimization toolbox, arithmetic crossover,
crossover probability=0.8 (default), Gaussian mutation (default),
(3) PSO, PSO from MATLAB global optimization toolbox, global
self adjustment weight = 1.49 (default), social adjustment weight =
1.49 (default), inertia range = [0.1-1.1] (default), (4) DE1, DE/rand/1
with per-generation-dither, implementation by Storn and Price,
(5) DE2, DE/local-to-best/1, implementation by Storn and Price,
and (6) CMA, CMA-ES, no parameters are adjusted. We set the
number of solutions at each iteration and the maximum number of
iterations to 200 and 1500, respectively.

We use the zero-mean GP formulation to simplify our GP model;
it is worth noting that this formulation is also widely used in the ma-
chine learning community. For noisy and real-world problems, we
tune all possible hyperparameters (i.e., θ , σ 2

n , and σ 2
f ). The length-

scale is tunable in the range of 10−3 to 102. The σ 2
n and σ 2

f (i.e.,
noise and signal variance, respectively) are tuned in the range of
10−6 to 10−1 and 10−6 to 102, respectively. The function responses
were normalized so that the mean equals to zero and the variance
equals to unity.

3 RESULTS AND DISCUSSIONS.
The performance is measured through the log of the optimality
gap (OG) metric. Our experiments reveal that PSO, CMA-ES, and

263

https://doi.org/10.1145/3319619.3322012
https://doi.org/10.1145/3319619.3322012


GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Pramudita Satria Palar, Lavi Rizki Zuhal, and Koji Shimoyama

0 100 200 300 400 500
-15

-10

-5

0

lo
g

1
0

(O
G

)

GA1

GA2

PSO

DE1

DE2

CMA

(a) Nsamp = 20 (Median).
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(b) Nsamp = 40 (Median).

Figure 1: Convergence plot of log-marginal likelihood for
the noisy Sasena problem.
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(a) Nsamp = 60 (Median).
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(b) Nsamp = 120 (Median).

Figure 2: Convergence plot of log-marginal likelihood for
the noisy Hartmann 6 problem.
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(b) Nsamp = 80 (Median).

Figure 3: Convergence plot of log-marginal likelihood for
the BWB problem.
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Figure 4: Convergence plot of log-marginal likelihood for
the airfoil problem.

DE2 are the best performers, in the sense that they converged to
the global optimum faster compared to their competitors (ie., GA1,
GA2, and DE1). Interestingly, the results show that the two GAs are
slower in both exploration and exploitation phase compared to the
other methods, with the exception of DE1 (however, eventually DE1
converged to high accuracy faster than the two GAs). We observe
that CMA-ES, PSO, and DE2 converged to high precision typically
just within less than 500 iterations. Thus, basically, the combination
of less than 500 metaheuristic iterations and 100 individuals is
enough to ensure high-quality GP. The quasi-parameter free nature
of CMA-ES is one particular advantage for ones who wish to deploy
gradient-free techniques for hyperparameters optimization without
tweaking metaheuristics parameters; it also has strong theoretical
properties [2].

Although PSO, CMA-ES, and DE/local-to-best/1 are highly per-
forming methods, they can still get trapped in a local optimum even
after a long run. Thus, we think that it is wise to restart the search
several times to ensure that the global optimum is found. It is also
worth noting that other implementations of GA (e.g. by changing
different crossover, crossover and mutation probability) might work
better for solving GP’s auxiliary optimization problems; however,
at least for the implementations that we have right now, they are
not robust enough.
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