
Semantic Fitness Function in Genetic Programming Based on
Semantics Flow Analysis∗

Pak-Kan Wong
The Chinese University of Hong Kong

Hong Kong
pkwong@cse.cuhk.edu.hk

Man-Leung Wong
Lingnan University

Hong Kong
mlwong@ln.edu.hk

Kwong-Sak Leung
The Chinese University of Hong Kong

Hong Kong
ksleung@cse.cuhk.edu.hk

ABSTRACT
The search performance of conventional Genetic Programming
(GP) methods is strongly guided by the performance of the fitness
function. In each generation, the fitness function evaluates every
program in the population and measures the distance between
the final output of the programs and the desired output. Human
programmers often rely on the feedback from the intermediate
execution states, which are the semantics, to localize and resolve
software bugs. However, the semantics of a program is seldom
explicitly considered in the fitness function to assess the quality of
a program in GP. In this paper, we invent methods to improve fitness
evaluation leveraging semantics in GP. We propose semantics flow
analysis for programs using information theoretic concepts. Next,
we develop a novel semantic fitness evaluation technique to rank
programs using semantics based on the semantics flow analysis.
Our evaluation results show that adopting our method can improve
the success rates in Grammar-Based GP.

CCS CONCEPTS
• Software and its engineering → Genetic programming; •
Computing methodologies→ Neural networks;

KEYWORDS
Genetic Programming, Semantics, Fitness, Semantics Flow

ACM Reference Format:
Pak-Kan Wong, Man-Leung Wong, and Kwong-Sak Leung. 2019. Semantic
Fitness Function in Genetic Programming Based on Semantics FlowAnalysis.
In Genetic and Evolutionary Computation Conference Companion (GECCO
’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3319619.3321960

1 INTRODUCTION
Conventional Genetic Programming (GP) and Grammar-Based Ge-
netic Programming (GBGP) methods search on the syntactical struc-
ture of a program [2, 5, 6]. The semantics of a program involves

∗Produces the permission block, and copyright information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321960

the Intermediate Execution States (IESs), which are the values com-
puted by the subtrees of a program tree and are sometimes called
program traces, and concerns the meaning of the program execu-
tion. Conventional methods ignore the semantics of the program.
The first analytical study on semantics in the context of GP was
conducted by Langdon [4] and more recently by Krzysztof [3]. It
is observed that human programmers often rely on the feedback
from the IESs and then they can effectively localize the bugs and
assess the quality of different parts of the programs. In this paper,
we show that the IESs of a program can be divided into two groups:
those can be found in an optimal program and those cannot. As
such, program structures associated with the former group may
be more reusable during evolution than those associated with the
latter group. Programs composed of more reusable program struc-
tures should be given a higher chance, which can be controlled by
the fitness function, to breed new programs in the next population.
Therefore, we propose a method to utilize the semantic information
to rank the programs.

The paper is organized as follows. First of all, we introduce
the concept of semantics flow and present a brief description of
semantics flow analysis in Section 2. Our semantic fitness function is
presented in Section 3. Experiments are briefly presented in Section
4. Conclusion and future work are discussed in Section 5.

2 SEMANTICS FLOW IN A PROGRAM
To understand how a program works, it is often useful to inspect
the IESs which are called the semantics. They are stored in the
memory during program execution. This is essential to study how
the semantics interact. Let us focus on the candidate programs
in GP that can be executed sequentially. Initially, the inputs to a
program are the data stored in the memory of a computer as shown
in Figure 1. We call the data as the input semantics of the program. A
program instructs the computer how to transform the data stored in
the memory at each step. The program in Figure 1 needs transform
the input semantics (i.e. x0, x1, x2, x3, and x4) five times by applying
and functions and or functions twice. Immediately after each step
of the function execution, the IES stored in the memory is the
semantics of the step. By construction, the programs generated by
GP will stop after a finite number of steps for parse trees with a
limited height. The final output of the program is the data in the
memory after the completion of all steps The data is called the
output semantics.

In order to track the changes in semantics during program execu-
tion, we formally represent all semantics appeared in the memory
using a set of tuples. Denote the semantics at step k for a pro-
gram p as sp (k), where sp (0) is a tuple storing the initial inputs,
i.e. the input semantics. Suppose the program p terminates after

354

https://doi.org/10.1145/3319619.3321960
https://doi.org/10.1145/3319619.3321960

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Pak-Kan Wong et al.

output

or

and

or and

outputOutput semantics
5

 in
te

rm
ed

ia
te

ex

ec
u

ti
o

n
 s

ta
te

s

Input semantics

Memory Program

x0, x1, x2, x3, x4 x0 x2x1 x4x3

Figure 1: Illustration of the formulation of semantics flow.

step K , the semantics at step sp (K), is the output semantics of
the program. A semantics flow of this program can be denoted by
sp (0) → sp (1) → ...→ sp (K).

3 SEMANTICS FITNESS FUNCTION
Given that a program is defective, some parts of it should not be
included or the way of composing these components should be
wrong. We propose SemanticsCompare(p1,p2) (Algorithm 1) which
is a semantic fitness function to compare the programs. Algorithm
1 is based on two objectives:

1) Optimal Program Execution. It can be proved that the se-
mantics flow of the optimal program is constrained which can be
exploited during evolution. Let T be the random variable for the
desired output semantics and is uniquely defined by all given test
cases. As such, the random variable Sopt (K) is equal to the random
variable T given that the program opt is an optimal program.

Corollary 1. Optimal program execution inequality. For any
semantics flow of any optimal programopt , and the random variable
T corresponds to the target output semantics, we have I (Sopt (i);T) ≤
I (Sopt (j);T) ≤ I (T ;T) ≤ H (T) , where i ≤ j and I (·; ·) is the mutual
information function.

The proof applies data processing inequality [1]. Moreover, the
smallest i satisfying Corollary 1 is called a critical step. Programs
with a critical step are more preferable than those without.

2) Parsimony Principle of Program Size. We want to keep
the size of the potentially correct part of the program to be small. To
measure the program complexity of this part of the program,we con-
sider the following quantity:∆Bcr it ical (p1,p2) = Bp1 (icr it ical ,p1)−
Bp2 (icr it ical ,p2) , where Bp (i) is the total number of branches of p
involved in the semantics sp (i). If the total number of branches of
p1 is smaller than that of p2, it is more likely that p1 will use fewer
number of steps to achieve the target outcome than that p2 will
use. In addition, we define Vp (i) as the total number of nodes in
the branches involved in the i-th step of a program p. Vp (i) is an
alternative measure of program complexity.

4 EVALUATION
Due to page limit, we present a part of our results about using GP
with our semantics fitness function to solve parity problems. The
semantics fitness function and the canonical fitness function (CFF),
i.e. using the total number of correct cases as the fitness value, were
executed independently for 30 runs per problem. Our results show
that the success rates of the semantics fitness function and CFF
were respectively 93% and 90% for the parity 5 problem. For the

Algorithm 1 SemanticsCompare(p1,p2)
Input: program p1 and program p2
Output: a Boolean variable better (i.e. p1 ranks higher than p2).
1: if Bp1 (icr it ical ,p1) , 0 ∧ Bp2 (icr it ical ,p2) == 0 then
2: better = TRUE
3: return better
4: end if
5: if Bp2 (icr it ical ,p2) , 0 ∧ Bp1 (icr it ical ,p1) == 0 then
6: better = FALSE
7: return better
8: end if
9: if p1 .f itness , p2 .f itness then
10: better = p1 .f itness > p2 .f itness
11: return better
12: end if
13: if ∆Bcr it ical (p1, p2) , 0 then
14: better = ∆Bcr it ical (p1, p2) < 0
15: return better
16: end if
17: better = Vp1 (icr it ical ,p1) < Vp2 (icr it ical ,p2)
18: return better

parity 6 problem, those values were 50% and 47% respectively. To
summarize, the success rates of the semantics fitness function were
3% higher than those values of CFF in these problems.

5 CONCLUSION AND FUTUREWORK
This paper proposes the concept of semantics flow inGP and designs
a fitness function for a set of defective programs based on their
semantic flows. Our method does not introduce extra parameters
in GP framework. Our experimental results show that our method
can attain a higher success rate than the canonical fitness function
can achieve. One shortcoming of our method is that more rounds
of fitness evaluation may be needed.

In the future, multi-objective optimization can be applied so as to
minimize the program errors at the final output and the seriousness
of the program errors within the defect programs. Apart from
Boolean functions, our method will be generalized to a function set
and a terminal set of countable and finite sets. Lastly, we believe
that the theory of semantics flowwill lead to innovation of semantic
crossover and semantic mutation.

ACKNOWLEDGMENTS
This research is supported by Institute of Future Cities of The
Chinese University of Hong Kong.

REFERENCES
[1] Thomas M Cover and Joy A Thomas. 2012. Elements of information theory. John

Wiley & Sons.
[2] John R Koza. 1992. Genetic Programming: vol. 1, On the programming of computers

by means of natural selection. Vol. 1. MIT press.
[3] Krzysztof Krawiec. 2016. Behavioral Program Synthesis with Genetic Programming.

Vol. 618. Springer.
[4] William B Langdon. 2002. How many Good Programs are there? How Long are

they?. In Proceedings of the 2002 Foundations of Genetic Algorithms. 183–202.
[5] Peter Alexander Whigham. 1995. Grammatically-based genetic programming. In

Proceedings of the Workshop on Genetic Programming: From Theory to Real-world
Applications, Vol. 16. 33–41.

[6] Man Leung Wong and Kwong Sak Leung. 1995. Applying Logic Grammars to
Induce Sub-Functions in Genetic Programming. In Proceedings of the 1995 IEEE
Conference on Evolutionary Computation, Vol. 2. IEEE, 737–740.

355

	Abstract
	1 Introduction
	2 Semantics Flow in a Program
	3 Semantics Fitness Function
	4 Evaluation
	5 Conclusion and Future Work
	Acknowledgments
	References

