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ABSTRACT
Estimation of Distribution Algorithms have been successfully used
for solving many combinatorial optimization problems. One type
of problems in which Estimation of Distribution Algorithms have
presented strong competitive results are permutation-based com-
binatorial optimization problems. In this case, the algorithms use
probabilistic models specically designed for codifying probability
distributions over permutation spaces. One class of these probabil-
ity models is distance-based exponential models, and one example
of this class is the Mallows model. In spite of the practical success,
the theoretical analysis of Estimation of Distribution Algorithms
for permutation-based combinatorial optimization problems has
not been extensively developed. With this motivation, this paper
presents a rst mathematical analysis of the convergence behavior
of Estimation of Distribution Algorithms based on the Mallows
model by using an innite population to associate a dynamical
system to the algorithm. Several scenarios, with dierent tness
functions and initial probability distributions of increasing com-
plexity, are analyzed obtaining unexpected results in some cases.
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1 INTRODUCTION
Estimation of Distribution Algorithms (EDAs) [6, 9], is a class of
Evolutionary Algorithms introduced by Mühlenbein and Paaβ [8].
The main characteristic of EDAs is that they learn a probability
distribution from a database containing the selected solutions from
the previous generation at each iteration. The new set of solutions
is sampled from the learned probability distribution.

Recently, EDAs have been successfully used to solve permutation-
based combinatorial optimization problems [1, 10]. In order to do
that, these EDAs use probabilistic models specically designed for
codifying probability distributions over permutation spaces. In par-
ticular, the authors of [1] used a Mallows model. This model can
be included in a more general class of probability models: distance-
based exponential models. However, it is still not clear which mech-
anisms allow these algorithms to obtain these results.

Similar to Genetic Algorithms, the rst theoretical studies on
EDAs were focused on the convergence behavior of algorithms
such as UMDA [11] and PBIL [4]. Nonetheless, several works have
been presented recently in the literature with the aim of attaining
new theoretical results about the runtime, the population sizing or
the model accuracy of EDAs. For a current state-of-the-art, see [5].
However, the previous theoretical studies are designed for binary
and continuous search spaces.

Our objective in this work is to present a mathematical model to
analyze the behavior of an EDA based on a Mallows model in some
scenarios with dierent tness functions and initial probability dis-
tributions of increasing complexity, and obtain the rst theoretical
results over the permutation space.

2 THE MALLOWS MODEL
The Mallows model [7] is a distanced-based exponential probabil-
ity model over permutations, considered as the analogous of the
Gaussian distribution. The probability value of every permutation
σ ∈ Σn depends on two parameters: a central permutation σ0 and
a spread parameter θ . The Mallows model is dened as

P (σ ) =
1

φ (θ )
e−θd (σ ,σ0 ) (1)

where d (σ ,σ0) is the distance from σ to σ0, and φ (θ ) is the nor-
malization constant. By denition, any two solutions at the same
distance from the central permutation have the same probability.

The most used distance in the literature for Mallows model is
Kendall’s-τ distance, andwewill use it during this work. Kendall’s-τ
distance d (σ ,π ) is the minimum number of adjacent transpositions
needed to bring σ−1 to π−1.
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3 EDAS BASED ON MALLOWS MODELS
An EDA can be considered as a sequence of probability distributions,
each one given by a stochastic transition rule G. So, Pi = G (Pi−1) =
Gi (P0), ∀i ∈ N. Hence, the convergence behavior is described as
follows: limi−→∞ G

i (P0).
The application of the EDA schema to deal with optimization

problems can involve an unapproachable variety of situations and
behaviors. To study the behavior of an EDA, we assume that the
population is innite [2]. In EDAs with innite populations, the
empirical probability distribution induced by the solutions in the
current population and the selected population converge to their
underlying probability distributions Pi and PSi , and they could
be thought of as the population and the selected proportions of
each individual at iteration i . At each iteration of the algorithm a
probability distribution Pi+1 is obtained (see Algorithm 2 from [2]).

Hence, Pi = G (Pi−1) = Gi (P0), where G returns the expected
probability vector for the next iteration: G (Pi ) = E[G (Pi )]. So,
when the population size tends to innity,

lim
i−→∞

Gi (P0) = lim
i−→∞

Gi (P0). (2)

In order to study the convergence behavior of the algorithm with
innite population, a composition of the selection operator ϕ and
the approximation step a used to learn the probability distribution
is used: G = a ◦ ϕ.

The selection operator used in this work has been the widely
used 2-tournament selection (adapted to an innite population):

pSi (σ ) = 2
∑

π |f (σ )>f (π )

pi (σ )pi (π ) +
∑

π |f (σ )=f (π )

pi (σ )pi (π ). (3)

In addition, in our mathematical model, at each generation of the
algorithm a new Mallows model will be learnt from PSi by using
the maximum likelihood estimators of σ0 and θ , σ̂0 and θ̂ , adapted
from [3] to an innite population:

σ̂0 = arg min
σ ∈Σn

∑
π ∈Σn

d (π ,σ ) · pS (π ) (4)

∑
π ∈Σn

d (π , σ̂0) · p
S (π ) =

n − 1

eθ̂ − 1
−

n−1∑
i=1

n − i + 1

e (n−i+1)θ̂ − 1
. (5)

4 LIMITING BEHAVIOR IN SOME SCENARIOS
Our mathematical modeling is applied and proved to some sce-
narios. Each scenario is dened by a tness function f and an
initial probability distribution P0. The dierent tness functions
f used for the scenarios have been the uniform function, needle
in a haystack function and Mallows probability distribution. The
following results have been proven:
• When f is a constant function, for any P0 Mallows distribu-
tion, the algorithm keeps the same model forever.
• When f is a needle in a haystack function and P0 a Mallows
distribution centered in the optimal solution, the algorithm
converges to the optimal solution.
• When f is a Mallows model centered in the optimal solu-
tion (θ > 0 ) and P0 a uniform distribution, the algorithm

converges to a Mallows model centered in the optimal dis-
tribution.

Moreover, when f is a Mallows model centered in the optimal
solution (θ > 0) and P0 another Mallows model centered in a
solution σ0, we have made some conjectures:

• G operator can only estimate central permutations between
the optimal solution and σ0.
• The algorithm can only converge to solutions at distance
d ≤ bn(n − 1)/4c (with a single exception).

5 CONCLUSIONS
We have presented a mathematical model to study an EDA with
innite populations using discrete dynamical systems and distance-
based exponential models. Several problems have been presented
and studied, combining the formal results and some conjectures
(based on some experiments). In general, the presented theoretical
model has shown that in most cases it converges to the optimal
solution.
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