
Evolving Indoor Navigational Strategies Using Gated Recurrent
Units In NEAT

James Butterworth
University of Liverpool

Liverpool, UK
j.butterworth2@liverpool.ac.uk

Rahul Savani
University of Liverpool

Liverpool, UK
rahul.savani@liverpool.ac.uk

Karl Tuyls
University of Liverpool

Liverpool, UK
k.tuyls@liverpool.ac.uk

ABSTRACT
Simultaneous Localisation and Mapping (SLAM) algorithms are
expensive to run on smaller robotic platforms such as Micro-Aerial
Vehicles. Bug algorithms are an alternative that use relatively little
processing power, and avoid high memory consumption by not
building an explicit map of the environment. In this workwe explore
the performance of Neuroevolution - specifically NEAT - at evolving
control policies for simulated differential drive robots carrying out
generalised maze navigation. We compare this performance with
respect to one particular bug algorithm known as I-Bug. We extend
NEAT to include Gated Recurrent Units (GRUs) to help deal with
long term dependencies. We show that both NEAT and our NEAT-
GRU can repeatably generate controllers that outperform I-Bug
on a test set of 209 indoor maze like environments. We show that
NEAT-GRU is superior to NEAT in this task. Moreover, we show
that out of the 2 systems, only NEAT-GRU can continuously evolve
successful controllers for a much harder task in which no bearing
information about the target is provided to the agent.

CCS CONCEPTS
• Computing methodologies → Intelligent agents; Mobile
agents; Neural networks; Artificial life; Genetic algorithms;

KEYWORDS
genetic algorithms, neuroevolution, NEAT, navigation, maze solv-
ing, gated recurrent units, memory
ACM Reference format:
James Butterworth, Rahul Savani, and Karl Tuyls. 2019. Evolving Indoor
Navigational Strategies Using Gated Recurrent Units In NEAT. In Proceedings
of Genetic and Evolutionary Computation Conference Companion, Prague,
Czech Republic, July 13–17, 2019 (GECCO ’19 Companion), 2 pages.
https://doi.org/10.1145/3319619.3321995

1 INTRODUCTION
Smaller robotic platforms such as Micro-Aerial Vehicles (MAVs)
have the potential to carry out tasks in indoor environments that
are often too dangerous or time consuming for humans to do. Simul-
taneous Localisation and Mapping (SLAM) is the process whereby

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321995

an agent constructs a map of the environment and uses this explicit
map representation as a means to navigate. Despite the success
of SLAM, it is a relatively computationally expensive algorithm
leading to problems with memory and processing speed on smaller
robotic platforms. An alternative suite of algorithms known as Bug
Algorithms aim to navigate through an environment without build-
ing an explicit representation of the map. These agents react to
local sensor readings such as proximity sensors to avoid objects.
The agents also often know the distance and/or the relative position
(the azimuth angle) to the goal but are not aware of the overall
structure of the environment.

Even though Bug Algorithms are quite successful, they are all
hand designed. This raises the question as to whether there exists
more efficient and effective algorithms or control policies for these
environments that have not yet been conceived of. We explore
this by testing the performance of Neuroevolution of Augmenting
Topologies (NEAT) with respect to one particular Bug Algorithm
known as I-Bug which is particularly suitable to real robotic tasks.
We also introduce an algorithm, NEAT-GRU, that includes Gated
Recurrent Units (GRUs) in the NEAT networks thereby introducing
a form of long term memory.

Previous work [6] considered the problem of evolving gener-
alisedmaze solvers. Our contribution is to consider the performance
of the algorithms with relation to a greater number of metrics;
explore the advantages of using specific long term memory com-
ponents; and introduce a much harder task in which no bearing
information is available to the network.

2 EXPERIMENTAL SETUP
NEAT-GRU inserts GRU units into the networks as well as normal
hidden nodes via node mutations. The weights of the GRUs are
modified via link mutations identical to those used in normal NEAT.
For simplicity, crossover is not used in NEAT-GRU. NEAT-GRU is
very similar to NEAT-LSTM introduced in [5] however there are
less parameters to optimise and we test NEAT-GRU in a continuous
control domain.

The robotic simulator ARGoS [4] is used in this work for both
the baseline I-Bug experiments and for the training and testing of
the evolved solutions. In this work we use the simulator’s Foot-Bot
model [2] since it is equipped with 24 local proximity sensors, a
range and a bearing sensor, which are the same sensors that are
required for the I-Bug algorithm.

Bearing Experiments. We tested I-Bug, NEAT and NEAT-GRU on
their ability to produce controllers that can navigate through 209
randomly generated 3D test environments of size 14m × 14m that
contain walls and obstacles. These environments were the same as
those originally used in [3]. Each agent had 300 simulated seconds

111

https://doi.org/10.1145/3319619.3321995
https://doi.org/10.1145/3319619.3321995


GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic James Butterworth, Rahul Savani, and Karl Tuyls

to navigate through each environment. The success percentage was
recorded as the number of mazes in which the target was found as a
percentage of the total number of mazes in the test set. Furthermore,
the agents’ trajectory lengths were recorded and normalised by
divided through by the A* path length, which represents the shortest
possible path through the maze. For I-Bug, the sensor configuration
in [3] was used. In the experiments for NEAT and NEAT-GRU, only
12 (compared to 24) proximity sensors were used and their size was
reduced to 0.2m. The network outputs for the evolved solutions
were the speeds of the left and right wheels of the Foot-Bot.

The environments used in training were randomly generated
according to the same algorithm that generated the test set; details
of which are available in [3]. During training a new set of 10 mazes
were randomly generated every generation. The entire evolutionary
run lasted 1000 generations with a population size of 150. Every 25
generations, the 3 best genomes from the current generation, the
best 2 genomes from previous generation and the best genome from
two generations ago are tested on the test set and their performance
is recorded. 20 runs are performed using both NEAT and NEAT-
GRU. The following fitness function, f1, was used in training:

f1 =

{
1
l 0.5 ifmaze_solved
0 otherwise

(1)

where l is the trajectory length per A* length taken to find the
target. If the agent crashed into a wall the final fitness was divided
by 10.

No Bearing Experiments. A much harder task was designed to
test the cognitive abilities of NEAT-GRU further. This task reduces
the number of sensors leaving just the distance to target as input.
This sensor configuration removes the ability of the agent to know
its relative orientation towards the target, therefore finding the
target must be done by accumulating distance measurements and
performing significant cognition in order to ascertain the direction
in which to travel. Only NEAT and NEAT-GRU were evaluated on
this task due to the fact that I-Bug cannot function without access
to the bearing sensor.

Given that this task is muchmore difficult, an environment of size
10m × 10m was used that contained no obstacles. During training
each agent is evaluated 5 times with different starting orientations.
Each agent is given 80 simulated seconds to find the target. NEAT
and NEAT-GRU were ran 10 times each for 5000 generations per
run with a population size of 150. The fitness function f2 = (L−d)3

was used where L is the diagonal length of the arena (the maximum
distance the agent can be from the target) and d is the final distance
between the agent and the target at the end of the run.

3 RESULTS
I-Bug. On the 209 test environments I-Bug achieved a success

rate of 195/209 = 93.3%. The mean and median of the trajectory
lengths per A* lengths over all the environments were 2.4174 and
1.69 respectively.

Evolved Solutions. For the experiments with the bearing sensor,
Table 1 highlights the number of runs that produced a genome (out
of those evaluated on the test set) that outperformed I-Bug in 2
metrics: success percentage and the mean of the trajectory length

per A* length, and in 3 metrics: success percentage and the mean
and median of the trajectory length per A* length. Some of the
solutions produced were significantly better than I-Bug (p < 0.0001
based upon trajectory lengths), for example, one solution named
‘G89’ had a success rate of 196/209 (93.7%), a trajectory length mean
of 1.9024 and a median of 1.5459. There also exist solutions that
have a larger success rate but at the expense of having longer path
lengths.

2 metric winners 3 metric winners
NEAT 3/20 0/20
NEAT-GRU 10/20 2/20

Table 1: Number of evolutionary runs in which at least one
genome outperformed I-Bug on the 209 test environments.

For the experiments without the bearing sensor, out of the 10
evolutionary runs for NEAT-GRU, all 10 produced a solution capable
of solving the task in all 5 orientations. In contrast, out of the 10
runs using NEAT, 0 of them produced solutions that could solve the
task in all 5 orientations. Figure 1 shows the maximum fitness so far
for the population during training for the no bearing task. It shows
the dramatic increase in performance due to the inclusion of GRUs
into the NEAT networks. More detail on all aspects of this work
exists [1] and a video demonstrating some of the most interesting
evolved solutions is available at https://youtu.be/8EqyeuX_lR0

Figure 1: Themaximumfitness so far for the population dur-
ing training for both GRU and non-GRU versions of the no-
bearing experiment. The results are averaged over 10 runs.

REFERENCES
[1] J Butterworth, R Savani, and K Tuyls. 2019. Evolving Indoor Navigational Strate-

gies Using Gated Recurrent Units In NEAT. CoRR (2019). arXiv:1904.06239
[2] M Dorigo et al. 2013. Swarmanoid: A Novel Concept for the Study of Heteroge-

neous Robotic Swarms. IEEE Robotics Automation Magazine 20, 4 (2013), 60–71.
[3] K McGuire, G de Croon, and K Tuyls. 2018. A Comparative Study of Bug Algo-

rithms for Robot Navigation. CoRR (2018). arXiv:1808.05050
[4] C Pinciroli et al. 2012. ARGoS: A Modular, Parallel, Multi-Engine Simulator for

Multi-Robot Systems. Swarm Intelligence 6, 4 (2012), 271–295.
[5] A Rawal and R Miikkulainen. 2016. Evolving Deep LSTM-based Memory Net-

works Using an Information Maximization Objective. In GECCO 2016 (GECCO
’16). 501–508.

[6] D Shorten and G Nitschke. 2015. Evolving Generalised Maze Solvers. In Appli-
cations of Evolutionary Computation, Antonio M Mora and Giovanni Squillero
(Eds.). Springer International Publishing, Cham, 783–794.

112

http://arxiv.org/abs/1904.06239
http://arxiv.org/abs/1808.05050

	Abstract
	1 Introduction
	2 Experimental Setup
	3 Results
	References

