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ABSTRACT
For evolutionary algorithms (EAs), selection is one of the main
components which decides solutions for the new population. Most
selection strategies are fitness-based and prodigal in fitness evalua-
tions, since many evaluated solutions are discarded immediately
due to their worse values. It is desirable to predict the quality of
new solutions without the evaluations before selection, thus the
efficiency of EAs can be improved. Naturally, selection can be con-
sidered as a classification problem: selected solutions belong to the
‘good’ class and the discarded ones belong to the ‘bad’ class. This
paper demonstrates this idea by introducing a classification-based
selection (CBS) strategy for EAs. The CBS is integrated into a state-
of-the-art algorithm and studied on a test suite. The experimental
results evidence the efficiency of CBS on saving the number of
fitness evaluations when compared with the original algorithm.
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1 MOTIVATION, PROBLEM AND OUR IDEA
In evolutionary algorithms (EAs) [9], selection strategy is one of the
main components which aims to decide the new population. Since
most selection strategies are fitness-based, there exists a waste on
many fitness evaluations, where only evaluated solutions with bet-
ter fitness values can enter the following optimization procedures
and the worse ones are discarded directly. Since the number of fit-
ness evaluations is one of the main measurements for the efficiency
of EAs, saving the number of fitness evaluations has attracted much
attention, and many methods in this category have been proposed.
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Among them, the surrogate (meta) model-based approaches [5] are
the promising ones, where the surrogate models are built to evalu-
ate the solutions instead of the real optimization problem. In these
cases, the number of fitness evaluations can be significantly reduced.
However, selection in EAs can naturally be regarded as a classifi-
cation problem, where the chosen solutions belong to the ‘good’
class, and the discarded ones belong to the ‘bad’ class. Based on
this idea, classification model-based approaches, which are special
cases of surrogate-based approaches are of interest [3, 6, 7, 14, 15].

In most of EAs, mostly the ‘good’ solutions are attracted much
attention, and the current population contains relative ‘good’ solu-
tions found so far. It is beneficial to construct a classifier to assist
selection based on the current population.

Following the above ideas, we propose a classification-based se-
lection (CBS) strategy for EAs. In this proposed strategy, at first, a
classification model is built based on the current population. Next,
the model is employed to predict the quality of the generated so-
lutions. Then, the newly generated ‘bad’ solutions are discarded
directly without being evaluated according to the classification
model, where only the ‘good’ ones will be evaluated and enter the
following optimization procedures. Therefore, the number of fitness
evaluations can be saved by only evaluating a part of the generated
population. The framework of the proposed CBS-EA is as follows:

Step 1: Initialize the population P .
Step 2: Assign each individual x ∈ P a label.
Step 3: Build a classification model by the data set {< x , lx > }.
Step 4: For each x ∈ P

Step 4-1: Generate an offspring solution y , set the fitness
value as f (y) = ∞.

Step 4-2: Predict the label ly of y by classification model.
Step 4-3: Evaluate the real fitness value of y if ly == 1.
Step 4-4: If f (y) < f (x ), set x = y , f (x ) = f (y).

Step 5: If termination condition is not satisfied, go back to Step
2, otherwise, stop.
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Figure 1: The mean fitness values versus the number of fit-
ness evaluations obtained by CBS-CoDE and CoDE.
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Table 1: The number of fitness evaluations required by CBS-
CoDE vs. CoDE to achieve the samefitness values on f 1− f 13.

mean value mean value
CBS-CoDE CoDE

f 1 1.04e+05(+) 8.65e-61 2.74e+05 9.78e-61
f 2 9.98e+04(+) 9.96e-31 2.63e+05 9.82e-31
f 3 2.80e+05(+) 9.89e-16 3.00e+05 1.52e-15
f 4 1.27e+05(+) 9.49e-16 3.00e+05 1.01e-15
f 5 2.67e+05(-) 1.50e+01 1.09e+05 1.50e+01
f 6 1.04e+04(+) 0.00e+00 2.10e+04 0.00e+00
f 7 2.64e+04(+) 9.97e-03 8.77e+04 9.94e-03
f 8 7.51e+04(-) 1.97e+01 4.82e+04 9.77e+00
f 9 5.76e+04(+) 0.00e+00 1.80e+05 0.00e+00
f 10 3.72e+04(+) 9.68e-11 9.85e+04 9.69e-11
f 11 1.38e+04(+) 9.82e-04 3.98e+04 9.28e-04
f 12 7.85e+03(+) 9.11e-03 2.26e+04 9.68e-03
f 13 5.47e+04(+) 8.70e-31 1.44e+05 9.78e-31
+/-/∼ 11/2/0

2 EXPERIMENTAL RESULTS
The proposed approach CBS − EA is applied to CoDE [10] and
studied on the first 13 benchmark functions from the YLL test
suite [12]. The classification model employed in experiments is
implemented in libsvm [1], which is a support vector machine (SVM)
based one-class classification model [8]. The kernel of the model is
radial basis function (RBF). The control parameters of the model
are set as the default values in libsvm. The variable dimensions
are n = 30 for all instances. The population size is N = 30 for
CoDE and its variants. The stop condition is FEs = 300, 000 for all
algorithms. Each algorithm is executed on each test instance for
30 independent runs. The Wilcoxon rank sum test [11] is applied
to compare the experimental results. The “+", “−", or “∼" in the
following table indicate the number of fitness evaluations obtained
by the CBS based algorithm is smaller than, bigger than, or similar
to the original algorithm at 95% significance level.

Results in Table 1 show that on 11 test instances, CBS-CoDE
achieves the same fitness value with fewer number of fitness evalu-
ations than CoDE. But on two instances f 5, f 8, CoDE takes fewer
number of fitness evaluations than CBS-CoDE. For other instances,
CBS-CoDE almost takes the half number of evaluations of CoDE.
The above situations may occur depending on the classification
model, thus for some instances, the classification model is not re-
ally suitable. As well as for CoDE, f 5, f 8 are hard to be optimized.
Figs. 1 plots the statistical results obtained by CBS-CoDE and CoDE
in terms of the mean fitness values versus the number of fitness
evaluations on f 7, f 10. The curves suggest CBS-CoDE converges
faster than CoDE and obtains better optimal results.

3 CONCLUSION AND FUTUREWORK
This paper proposes a classification-based selection (CBS) strategy
to improve the efficiency of evolutionary algorithms (EAs). The
strategy uses the current population to build a classifier, and then
predicts the quality of the newly generated offspring solutions by
the model. Since the ‘bad’ solutions are discarded directly by the
model without evaluation, the number of fitness evaluations can

be reduced. The CoDE is chosen as the optimizer. The SVM based
one-class classification model is chosen as the classifier. The CBS
based algorithm and the original algorithm are studied on the YLL
test suite [12]. The statistical results indicate that CBS can improve
the efficiency of the algorithm.

There are some future works that could be done for CBS-EA.
These topics include: (a) the CBS is only applied to a differential evo-
lution algorithm in this paper, as a general strategy, we will extend
the CBS with other kinds of EAs; (b) this paper only uses CBS for
single-objective optimization problems, we will apply the CBS to
multi-objective optimization problems, especially, the computation-
ally expensive optimization problems; (c) this paper only employs
a SVM based one-class classification model for experiments, we
will combine CBS with other kinds of classifiers and improve the
accuracy of the classification models; and (d) the CBS is only tested
in one test suite, we will apply the CBS assisted EAs to more test
instances and real-world applications (e.g. [2, 4, 13]).
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