
Novelty Search for Deep Reinforcement Learning Policy
Network Weights by Action Sequence Edit Metric Distance

Ethan C. Jackson

The University of Western Ontario

Vector Institute

ejacks42@uwo.ca

Mark Daley

The University of Western Ontario

Vector Institute

mdaley2@uwo.ca

ABSTRACT

Reinforcement learning (RL) problems often feature deceptive local

optima, and methods that optimize purely for reward often fail

to learn strategies for overcoming them [2]. Deep neuroevolution

and novelty search have been proposed as effective alternatives to

gradient-based methods for learning RL policies directly from pix-

els. We introduce and evaluate the use of novelty search over agent

action sequences by Levenshtein distance as a means for promoting

innovation. We also introduce a method for stagnation detection

and population regeneration inspired by recent developments in

the RL community [5], [1] that is derived from novelty search. Our

methods extend a state-of-the-art method for deep neuroevolution

using a simple genetic algorithm (GA) designed to efficiently learn

deep RL policy network weights [6]. Results provide further ev-

idence that GAs are competitive with gradient-based algorithms

for deep RL in the Atari 2600 benchmark. Results also demonstrate

that novelty search over agent action sequences can be effectively

used as a secondary source of evolutionary selection pressure.

CCS CONCEPTS

•Computingmethodologies→Reinforcement learning;Ge-

netic algorithms;

KEYWORDS

deep reinforcement learning, genetic algorithms, novelty search

ACM Reference Format:

Ethan C. Jackson and Mark Daley. 2019. Novelty Search for Deep Reinforce-

ment Learning Policy Network Weights by Action Sequence Edit Metric

Distance. In Genetic and Evolutionary Computation Conference Companion
(GECCO ’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM,

New York, NY, USA, 2 pages. https://doi.org/10.1145/3319619.3321956

1 INTRODUCTION

“Can the history of actions performed by agents be used to promote
innovative behaviour in benchmark RL problems?” Towards answer-
ing this, we introduce two new methods for using Lehman and

Stanley’s novelty search [2] — an evolutionary framework for RL in

which the reward signal is completely replaced by a behavioural

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00

https://doi.org/10.1145/3319619.3321956

metric — to train deep RL networks. The base algorithm is an ap-

proximate replication of Such et al.’s genetic algorithm (GA) for

learning DQN network [4] weights. This is a very simple yet ef-

fective gradient-free approach for learning DQN policies that are

competitive with those produced by deep Q-learning [6].

Novelty search has been shown to promote innovation in RL [6].

Here we introduce the use of approximate Levenshtein distance [3]

— a form of string edit metric distance — as the behavioural distance

function in two methods that directly apply or derive from novelty

search for deep RL.

In contrast to previous uses of novelty search for deep RL, the

characterization used here is highly general and does not require
environment-specific knowledge: it can be used in any problem for

which agent actions can be encoded as a sequence of discrete values.

2 SEED-BASED GENETIC ALGORITHM

The Base GA is an approximate re-implementation of Such et al.’s

GA introduced in [6]. A network instance is defined by:

Θn = Θn−1 + σϵ(τn) (1)

Θ0 = ϕ(τ0) (2)

where Θn
denotes network weights at generation n, τ denotes the

encoding of Θn
as a list of seeds, ϕ denotes a seeded, deterministic

initialization function, ϵ(τn) ∼ N(0, 1) denotes a seeded, deter-

ministic, normally-distributed pseudo-random number generator

seeded with τn and σ denotes a constant scaling factor (mutation

power). The GA does not implement crossover, and mutation ap-

pends a randomly-generated seed to τ . The GA performs truncated
selection — a process whereby the top T individuals are selected as

reproduction candidates (parents) for the next generation. From

these T parents, the next generation’s population is uniformly, ran-

domly sampled with replacement, and mutated. Elitism is also used

in conjunction with validation episodes to improve generalizability.

3 DQN ARCHITECTURE AND

PREPROCESSING

We used the DQN neural network architecture [4] in all experi-

ments: three convolutional layers with 32, 64, and 64 filters, respec-

tively, followed by one dense layerwith 512 units. The convolutional

filter sizes are 8×8, 4×4, and 3×3, respectively. The strides are 4, 2,

and 1, respectively. All weights are initialized using Glorot normal

initialization. All network layer outputs use rectified linear unit

(ReLU) activation. All game observations (frames) are downsampled

to 84× 84× 4 arrays. The third dimension reflects separate intensity

channels for red, green, blue, and luminosity. Consecutive game

observations are summed to rectify sprite flickering.

173

https://doi.org/10.1145/3319619.3321956
https://doi.org/10.1145/3319619.3321956

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Ethan C. Jackson and Mark Daley

Hyperparameter Method I Method II

Population Size (N) 100 + 1 1,000 + 1

Generations 500 1000

Truncation Size (T) 20 20

Mutation Power (σ) 0.002 0.002

Archive Probability 0.1 0.01

Max Frames Per Episode (F) 20,000 20,000

Training Episodes 1 1

Validation Episodes 5 30

Improvement Generations (IG) 10

Table 1: Hyperparameters for all experiments. Population

sizes are incremented to account for elites.

4 NOVELTY SEARCH

Novelty search requires two main components defined as follows.

1) We define the behaviour characteristic to be the sequence of

discrete actions performed by an agent in response to consecutive

environment observations. These action sequences are encoded as

strings of length F , where F is the maximum number of frames

available during training. Characters are either elements of a game’s

action space or the character x , which is reserved to encode a non-

consumed frame. 2) We define the behavioural distance function as

an approximation of the Levenshtein distance [3] between action

sequences encoded by strings.

d(A,B) =
S−1∑
s=0

L(Asn · · ·sn+n−1,Bsn · · ·sn+n−1) (3)

where A and B are two action sequences encoded by strings, S
is the number of segments, n is the length of each segment, and

L computes the Levenshtein distance between two strings. The

number of segments n is determined by computing ⌈F/s⌉, where
F is the number of characters in A and B, equal to the maximum

number of frames available during training.

5 RESULTS AND CONCLUSIONS

All experiments use Assault, Asteroids, MsPacman, and Space

Invaders. Source code and supplementary material are available at

https://github.com/ethancjackson/NoveltySearchLevenshtein. Hy-

perparameters are shown in Table 1. For testing, 30 episodes not

used in training or validation are used to evaluate the Base GA and

either Method I or II. In tables, means (± standard deviations) are

reported in game score units.

5.1 Method I

Method I implements a pure novelty search using the behaviour

characteristic and behavioural distance function described in Sec-

tion 4 and the GA as described in [6]. Learning results are summa-

rized by Table 2.

5.2 Method II

Method II applies novelty search to provide secondary selection

pressure when premature convergence or stagnation is detected.

Like Method I, this method also uses an archive of agent action

sequences and the same behaviour characteristic and behavioural

Game Base GA Method I

Assault 812 (± 228) 488 (± 158)

Asteroids 1321 (± 503) 736 (± 426)

MsPacman 2325 (± 351) 1437 (± 527)

Space Invaders 500 (± 303) 474 (± 195)

Table 2: Method I experiment results. Bolded results denote

significantly better testing scores (p < 0.05 in a two-tailed

t-test). In terms of game score, the Base GA outperforms

Method I in all but one game.

Game Base GA DQN Method II

Assault 1219 (± 676) 3359 (± 775) 1007 (± 413)

Asteroids 1263 (± 590) 1629 (± 542) 1476 (± 640)

MsPacman 3385 (± 633) 2311 (± 525) 3700 (± 209)

Space Invaders 615 (± 323) 1976 (± 893) 1211 (± 244)

Table 3: Method II experiment results. DQN scores are taken

from [4]. Bolded results denote significantly better testing

scores (p < 0.05 in a two-tailed t-test) than other methods re-

ported. Method II significantly improves learning in Space

Invaders over the Base GA (alsop < 0.05), and inMsPacman

over both DQN and the Base GA.

distance function as described in Section 4. In contrast, novelty

scores are only computed when stagnation has occurred: defined

as periods of IG generations with no net gains in validation per-

formance. These scores are used to regenerate the population with

individuals whose behaviours are maximally different from those in

the stagnant population. Results using Method II are summarized

by Table 3.

5.3 Conclusions

Results suggest that novelty search by string edit metric distance

on agent action sequences is likely not a suitable form of primary

selection pressure for learning in Atari games. Conversely, results

suggest that it provides an effective source of secondary selection

pressure, making it a viable GA extension for deep RL.

REFERENCES

[1] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff

Clune. 2019. Go-Explore: a New Approach for Hard-Exploration Problems.

arXiv:1901.10995 (2019).
[2] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution

through the search for novelty alone. Evolutionary computation 19, 2 (2011),

189–223.

[3] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, inser-

tions, and reversals. In Soviet physics doklady, Vol. 10-8. 707–710.
[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, and Others. 2015. Human-level control through deep reinforcement

learning. Nature 518, 7540 (2015), 529–533.
[5] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Polle-

feys, Timothy Lillicrap, and Sylvain Gelly. 2018. Episodic curiosity through reach-

ability. arXiv preprint arXiv:1810.02274 (2018).
[6] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O

Stanley, and Jeff Clune. 2017. Deep Neuroevolution: Genetic Algorithms Are a

Competitive Alternative for Training Deep Neural Networks for Reinforcement

Learning. arXiv preprint arXiv:1712.06567 (2017).

174

https://github.com/ethancjackson/NoveltySearchLevenshtein

	Abstract
	1 Introduction
	2 Seed-Based Genetic Algorithm
	3 DQN Architecture and Preprocessing
	4 Novelty Search
	5 Results and Conclusions
	5.1 Method I
	5.2 Method II
	5.3 Conclusions

	References

