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ABSTRACT
While optimized neural network architectures are essential for ef-
fective training with gradient descent, their development remains
a challenging and resource-intensive process full of trial-and-error
iterations. We propose to encode neural networks with a differen-
tiable variant of Cartesian Genetic Programming (dCGPANN) and
present a memetic algorithm for architecture design: local searches
with gradient descent learn the network parameters while evolu-
tionary operators act on the dCGPANN genes shaping the network
architecture towards faster learning. Studying a particular instance
of such a learning scheme, we are able to improve the starting feed
forward topology by learning how to rewire and prune links, adapt
activation functions and introduce skip connections for chosen
regression tasks. The evolved network architectures require less
space for network parameters and reach, given the same amount
of time, a significantly lower error on average.
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1 INTRODUCTION
We propose a differentiable version of Cartesian Genetic Program-
ming (CGP) [1] as a direct encoding of artificial neural networks
(ANN), which we call dCGPANN. Due to an efficient automated
backward differentiation, the loss gradient of a dCGPANN can be
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Figure 1: Node differences between CGP (left) and dCGP-
ANN (right) expression.

obtained during fitness evaluation with only a negligible computa-
tional overhead. The network architectures is improved by muta-
tions on neural connections (rewirings) and activation functions
of individual neurons. We show how complex architectures can
be evolved without human intervention for a series of small-scale
regression problems. We adapt the standard encoding of a Cartesian
genetic program [1], which is represented by a vector of integers,
encoding the functions F of each node as well as the inter-node
connections C:

xI = [F0,C0,0,C0,1, ...,C0,a , F1,C1,0, .....,O1,O2, ...,Om ].

Given n input nodes and a set of possible Kernel functions, in CGP
the vector xI entirely determines the m outputs. Indicating the
numerical value of the output of the generic CGP node having id i
with the symbol Ni , we formally have that:

Ni = Fi
(
NCi,0 ,NCi,1 , ...,NCi,a

)
In other words, each node outputs the value of its kernel (non
linearity) computed using as inputs the connected nodes.Wemodify
the standard CGP node adding a weightw for each connectionC , a
bias b for each function F and a different arity a for each node. We
also change the definition of Ni to:

Ni = Fi
©«
ai∑
j=0

wi, jNCi, j + bj
ª®¬

forcing the non linearities to act on the biased sum of their weighted
inputs (compare Figure 1).

We define xR as the vector of real numbers:

xR = [b0,w0,0,w0,1, ...,w0,a0 ,b1,w1,0,w1,1, ...,w1,a1 , ...]

The two vectors xI and xR form the chromosome of our dCGPANN
and suffice for the evaluation of the terminal values Oi , i = 1..m.

2 EXPERIMENTS AND RESULTS
Our experiments are based on several regression problems, which
we imported directly from the Penn Machine Learning Benchmarks
(PMLB) [2], selected for diversity and distinct complexity. Due

181

https://doi.org/10.1145/3319619.3322003
https://doi.org/10.1145/3319619.3322003


GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Marcus Märtens and Dario Izzo

Figure 2: Learning curves for selected regression problems, starting with a 4 layer feed-forward neural network (dark blue)
and applying the LSMF-algorithm for 10 iterations (last iteration: dark red). Reported is the average MSE of a population of
100 dCGPANN with different sets of starting weights in log-scale. The dashed black line corresponds to the average MSE of a
population of 100 randomly generated dCGPANNs, each running with one of the 100 starting weights.

to constraints in space, we only report results on the problems
197_cpu_act, 225_puma8NH and 344_mv here.

We propose the LSMF algorithm (short for "Learn, Select, Mu-
tate and Forget") as a memetic algorithm for network design. This
algorithm works in cycles, which represent short periods of learn-
ing of a population N dCGPANNs, intermixed with selection and
mutation. We initialize our starting population with dCGPANN
representations of feed forward neural network of 4 hidden layers
(10 nodes in each with tanh activations) and a sigmoidal output
neuron and begin executing cycles of Learn, Select and Mutate.

The Learn-step runs a standard stochastic gradient descent on
each dCGPANN modifying only xR . In the Select-step, the dCG-
PANN with lowest training loss is selected, eliminating all others.
Lastly, the elitism Mutate-step creates N − 1 new dCGPANNs by
mutating a small fraction (0.02) of active function genes and a small
fraction (0.01) of active connectivity genes, modifying only xI . This
process is repeated until the weights and biases of the dCGPANNs
converge towards a (near-)optimal loss. In this situation (which
appears after roughly 30 epochs for our experiments), it becomes in-
creasingly difficult for mutants to achieve significant improvements.
To resolve this situation, we execute the Forget-step which simply
reinitializes all weights and biases (keeping xI ). After the Forget
step, a new evolutionary iteration begins, consisting of another 30
cycles of Learn, Select and Mutate.

We extract the evolved network topologies after each evolu-
tionary iteration and evaluate their performance when trained
unperturbed (no mutations) with stochastic gradient descent for
100 different random weight initializations. Figure 2 shows that the
learning curves for the test-error decreases with each successive
iteration.

To analyze if LSMF has any selective pressure to drive optimiza-
tion towards better learning or simply amounts to some form of
random search, we also visualize the average test error of 100 ran-
dom dCGPANNs, removing 5% outlier. A random dCGPANN is
generated by drawing random numbers uniformly for all genes
within their corresponding bounds and constraints of xI and by
initializing xR in the same way as non-random dCGPANNs (zero
mean, normally distributed weights). We find that after at most

six evolutionary iterations, LSMF has evolved topologies which
perform better than random dCGPANNs on average. The difference
between the test error of the randoms networks in comparison
with the test error of the best evolved topology is significant with
p < 0.05 according to separate Wilcoxon Rank sum tests for each
regression problem. Remarkably, the random dCGPANNs seem to
perform (on average) still better than the initial feed-forward neural
networks. The (average) performance of the random dCGPANNs is
shown as dashed black line in Figure 2.

Analyzing the structure of the evolved network population, we
observe that certain connections are dropped while others are en-
forced by rewiring links on top of each other. While the dCGPANN
encoding enables such k-fold links, they are redundant for com-
putation and may be substituted by a single link containing the
sum of the k connection weights. Furthermore, we observe that
evolution generates skip-connections, which have been crucial for
the success of many modern network architectures.

3 CONCLUSION
Our experiments show that it is possible to find a dCGPANN start-
ing from a feed forward neural network that increases the speed
of learning while at the same time reducing the complexity of the
model for several regression problems. These two effects might
not be unrelated, as smaller models are (generally) faster to train.
However, while random dCGPANNs are on average even smaller
than the evolved dCGPANNs, their performance falls behind after a
couple of evolutionary iterations. This implies that LSMF-like algo-
rithms are able to effectively explore the search space of dCGPANN
topologies. Thus, there are reasons to assume that the performance
of neural networks might be generally enhanced by the deployment
of dCGPANNs.
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