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ABSTRACT
This work concerns the automatic adaptation of the probabilities of
occurrence of the genetic operators in Genetic Programming. We
experiment with different adaptation methods, different types of
problems, and different tree-based Genetic Programming flavors
with a variable number of genetic operators. Based on the published
literature and on our own results, we claim that operator probabili-
ties should be neither fixed nor carefully adapted, but instead they
should be constantly and randomly changed during the evolution.
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1 INTRODUCTION
The automatic adaptation of parameters has been on the agenda of
Evolutionary Algorithms (EAs) for a long time. This work concerns
the automatic adaptation of the probabilities of occurrence of the
genetic operators in Genetic Programming (GP). We have studied
the application of different adaptation methods, and tested them
in two different tree-based GP systems with a varying number of
operators, on a wide array of problems of different types.

2 A CRITICAL VIEW OF RELATEDWORK
A number of surveys have been published on adaptive methods for
EAs, but they include very few studies on the adaptation of operator
probabilities in GP, and none using standard tree-based GP. We
have looked for articles on automatic parameter adaptation in GP
published in the 10 years since the last major survey. Narrowing our
search to the adaptation of operator probabilities, we found only
five studies. From these, only two use tree-based GP [1, 3], both
report truly unconvincing results, and one [3] even recognizes that
random probabilities behave just as well as the adaptation methods.
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3 EXPERIMENTAL SETUP
We have used five different methods for dealing with the operator
probabilities, all described below.

FIXED. As the name suggests, this method establishes fixed
probabilities for the entire run. In some of the results reported in
Section 4 we have used traditional GP probabilities, i.e., 90/10 for
crossover/mutation. In other cases we did an attempt to find the
“correct” probabilities to use, based on the results of the DAVIS
adaptation method (described next).

DAVIS. A method adapted from [2], a classical procedure for
adapting operator probabilities in GAs that is fairly sophisticated
and highly parameterizable, and also naturally compatible with GP.

POP. An ad-hoc method developed for this work, this procedure
updates the probabilities every time an offspring is created. If the
offspring has better fitness than the average of the parents, the
probability of the method that created it is increased, otherwise it is
decreased. For decreasing the probability of an operator, its current
probability P is multiplied by a penalty coefficient p (p ∈ [0, 1], a
parameter of the method), and the new probability becomes P ·p. For
increasing the probability of an operator, it is the complementary
of its current probability (1 − P ) that is multiplied by the same
coefficient, and the new probability becomes 1 − ((1 − P) · p). After
each modification of a probability, the array of all probabilities is
normalized so their sum is 1.

IND. This method works exactly like POP, except that each
individual has its own set of probabilities.Whenever a new offspring
is created, it inherits the probabilities from its parents (unchanged
in case of mutation, averaged in case of more than one parent), and
these probabilities are then updated and normalized following the
same procedure described for POP.

RAND. As the name suggests, this method adopts random prob-
abilities for the operators. In the beginning of each generation,
each operator is assigned a random probability, normalized so that
the sum for all operators is 1. This is a population-level method,
since all the individuals in the population use the same random
probabilities.

We have tested the methods in 17 different problems of different
types (Table 1), including several symbolic regression and (binary
and multiclass) classification problems, as well as the classical Ar-
tifical Ant, Even-3 Parity and 11-Multiplexer benchmarks. We have
used a standard tree-based GP system (STDGP) with the two stan-
dard subtree crossover and subtree mutation operators, and also
with an extended set of operators, namely homologous crossover,
point mutation, swap mutation (swaps two independent subtrees
within the same individual) and shrink mutation (replaces a subtree
with one of its subtrees). For the classification problems we have
also used the M3GP system [4] (one of the few GP systems capable
of doing competent multiclass classification) with its five genetic
operators, i.e., subtree crossover and mutation, plus the operators
to add, remove, and swap dimensions.
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Table 1: List of problems, their characteristics and the
(Exp)eriments that used them (see Section 4). The Type of
problem can be (R)egression, (C)lassification, or (O)ther.

Name Samples Features Type Classes Exp
QUARTIC 21 1 R 1

ANT n/a n/a O 1
PARITY 8 3 O 1
PLEXER 2048 11 O 1

F50 252 241 R 2 , 4
HEART 270 13 C 2 3 , 5
BRAZIL 4872 7 C 2 3 , 5

ADMISSION 500 7 R 4
CONCRETE 1030 8 R 4

WINE 1599 12 R 4
MCD3 322 6 C 3 5
MCD10 6798 6 C 10 5
MOVL 360 90 C 15 5
SEG 2310 19 C 7 5

VOWEL 990 13 C 11 5
WAV 5000 40 C 3 5
YEAST 1484 8 C 10 5

4 RESULTS
Here we split our body of work in different experiments and analyse
the fitness of the best individual, on both training and test sets.
Statistical significance of the null hypothesis of no difference is
determined with the non-parametric Kruskal-Wallis test at p = 0.01.

Experiment 1 – Four classical benchmarks. In the first ex-
periment we used the classical four benchmarks (QUARTIC, ANT,
PARITY, PLEXER) and obtained results with the methods FIXED,
DAVIS, and RAND. The FIXED method used the average proba-
bilities of crossover/mutation found by DAVIS (see Section 3), i.e.,
90/10, 45/55, 50/50 and 50/50 on the four benchmarks, respectively.
No significant differences were found in terms of fitness.

Experiment 2 – Multi-operator Regression. Given the lack
of any significant results in the previous experiment, we tried the
same adaptation method (DAVIS) on a harder problem (F50), using a
set of six operators (see Section 3). Here we used two variants of the
FIXED method, the first using all probabilities equal (FIXED-equal)
and the second one using the probabilities found by DAVIS (FIXED-
found), that were 10/10/20/40/10/10 for the six genetic operators, by
the order specified in Section 3. Only on training fitness the FIXED-
found method was borderline significantly better than DAVIS.

Experiment 3 – Binary Classification. We used two binary
classification problems (HEART, BRAZIL) and obtained results with
four methods (FIXED, IND, POP, RAND). The FIXED method used
the traditional 90/10 setting for the crossover/ mutation probabili-
ties. Both IND and POP methods used 0.95 as the penalty coefficient
(see Section 3). On HEART, the FIXEDmethod was the worst, partic-
ularly on the training set, and RAND was the best, particularly on
the test set. On BRAZIL, no significant differences were observed.

Experiment 4 – All Regression. We used four symbolic re-
gression problems (ADMISSION, F50, CONCRETE, WINE), where
one of them (F50) had already been used with DAVIS and multiple
operators in Experiment 2. We obtained results with four methods
(FIXED, IND, POP, RAND), where FIXED had two variants (FIXED
50/50 and FIXED 90/10, corresponding to equal probabilities and tra-
ditional probabilities, respectively), IND used a penalty coefficient

of 0.75 (IND 75) and POP used a penalty coefficient of 0.95 (POP
95). These differences reflect our attempts at finding statistically
significant results. FIXED 90/10 was again the worst method, while
FIXED 50/50 was not significantly different from the others. The
exception was the atypical F50 problem, exhibiting tremendous
overfitting, where FIXED 90/10 was the best on the test set.

Experiment 5 – Classification with M3GP. We used nine
classification problems (HEART, BRAZIL, MCD3, MCD10, MOVL,
SEG, VOWEL, WAV, YEAST), where only two of them (HEART,
BRAZIL) are binary classification problems already usedwith STDGP
in Experiment 3. We used the M3GP system and obtained results
with four adaptation methods (FIXED, IND, POP, RAND), where
FIXED used the equal probabilities setting (20% for each of the five
M3GP operators) and both IND and POP used a penalty coefficient
of 0.99. On all nine problems, the only significant differences were
that RAND was better than other methods in a few cases.

5 DISCUSSION
The results described above are very easy to summarize: from fixing
the probabilities to carefully adapting them, and finally setting them
randomly in every generation, most of the time this choice does
not make any difference on either the training or the test fitness.
The exceptions to the rule are the fixed traditional settings 90/10,
that normally produces worse results, and the random settings
changed in every generation, that tends to produce better results.
Still, only in a handful of cases. The F50 problem is a clear outlier
where the 90/10 setting yields better results on the test set. This is
probably caused by factors related to bloat control that affect the
occurrence of overfitting. Studying these it outside the scope of this
work, however it provides new ideas for the future.

6 CONCLUSIONS
Given what we found in the literature and in our own results, we
conclude that in tree-based GP the automatic adaptation of operator
probabilities is a waste of computational resources that does not
result in easier learning or better generalization. We also conclude
that randomly assigning new probabilities in every generation is
apparently the best option.
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