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ABSTRACT
To investigate how encodings influence evolving the morphology
and control of modular robots, we compared three encodings: a
direct encoding and two generative encodings—a compositional
pattern producing network (CPPN) and a Lindenmayer System (L-
System). The evolutionary progression and final performance of
the direct encoding and the L-System was significantly better than
the CPPN. The generative encodings converge quicker than the
direct encoding in terms of morphological and controller diversity.
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1 INTRODUCTION
In evolutionary robotics, the encoding used to map the genotype
to phenotype greatly influences how the search space is traversed.
Being able to implement an efficient encoding can thereby speed up
the evolutionary search process. Direct encodings have been imple-
mented in modular robotics and are representations that directly
map the genotype to the phenotype [1, 6]. Generative encodings in-
directlymap the genotype to the phenotye as has been done through
using Lindenmayer-Systems (L-Systems) [4, 7, 10]. Another gener-
ative encoding utilized Compositional Pattern Producing Networks
(CPPNs) to construct virtual robots [2]. To investigate which encod-
ing strategy performs best for evolving locomotion in simulated
modular robots, we implemented a direct encoding, an L-System
and a CPPN to construct both the morphology and controllers of
our modular robots.
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2 METHODS
Virtual robot experimentation platform (V-REP) [3] was used for
our experiments 1. The modular robots were composed of two types
of modules: a cube module and a servo module (described in [10]).
A cube module was initially created to which additional modules
could be attached. The encoding strategies determined how the
male connection sites of the modules would be connected to the
available female connection sites of the robot. A simple sinusoidal
wave function was attached to every module to control the robot
in a decentralized manner. Due to the great number of possible
configurations of a robot, we limited our modular robots to a tree
depth of 5 modules, and a maximum number of 20 modules.

The direct encoding contained all the information about every
single module and could attach additional modules to available
female connection sites. The mutation operators of the direct en-
coding were: (1) add a module, (2) remove a module (and connected
modules), (3) change the orientation of an attached module, and (4)
mutate control parameters of a module. The L-System’s axiom sym-
bol [5] represented the cube module. Four other symbols defined
servo modules. The mutable parameters of the L-System were the
production rules for each symbol (orientation and connections site
of modules; see [10]). The mutation operators were: (1) resize the
list of production rules of a symbol, (2) change the production rule

1The source code, preliminary results, and some videos can be found here: https:
//github.com/FrankVeenstra/EvolvingModularRobots_GECCO_2019
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Figure 1: (left) Example of an evolved robot (L-System).
(right) Performance difference between the direct encoding,
L-System and CPPN using optimalmutation rates. The solid
line represents the average maximum fitness achieved be-
tween each of the ten runs across generations. The area for
each run represents the 25th and 75th percentiles. The error
bars represent the 0th and 100th percentiles.
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Figure 2: Magnitude of phenotypic change. The graphs show
the average change in the morphology (blue) and control
(green) lines. The area represents the 25th to 75th percentiles
and the error bars the 0th to 100th percentiles.

of a specific symbol, (3) swap two production rules, and (4) mutate
the controller corresponding to a symbol.

The CPPN was recursively queried for each available connection
site, and had an operator that expands the robot morphology similar
to the L-System. The network of the CPPN is modeled as a recurrent
neural network with the activation functions of the neurons used
in [8]. The mutation operators used by the CPPN were: (1) mutate
connections (all layers), (2) add neurons (recurrent layer), (3) remove
neurons (recurrent layer), and (4) mutate activation parameters and
activation functions of the recurrent layers.

A steady state evolutionary algorithm [9] was implemented for
which we only optimized the mutation rate for each different encod-
ing. The offspring were selected with a random selection operator.
The parent and offspring populations were combined and 50% of
the worst individuals were removed to form the population of the
next generation. The fitness metric used for the robots was distance
moved within 20 seconds. For the direct encoding and the CPPN,
a mutation rate of 12% was chosen, while a mutation rate of 32%
was ideal for the L-System. We repeated 10 evolutionary runs for
54,000 evaluations and a population size of 90 (600 generations).

3 RESULTS
Figure 1 depicts an example of an evolved robot and the difference
between performance of each encoding. The direct encoding and
the L-System performed similarly while the CPPN converged pre-
maturely, underperforming with respect to the other encodings.

Statistical testing showed no significant difference between the L-
System and direct encoding (Mann-Whitney U test, p-value of 0.37)
in the final generation; the difference between the direct/L-System
encoding and the CPPN was significant in both cases (p-value of
0.00012 and 0.00016 respectively). In addition, the magnitude of
change from one generation to the next in both the controllers and
morphologies of evolved robots is plotted in Figure 2. The mor-
phological change was measured by comparing the morphological
tree structures of elites between generations. The controller change
was based on the difference of the control parameters set for each
module. For all encodings, morphological change of the elites de-
creased quicker than change of the controller. Qualitatively, most
phenotypic change occurred in the direct encoding, least change in
the CPPN, and a change in between for the L-System.

4 CONCLUSION
Different encodings alter the traversal of the search space when
evolving modular robots. In our experiments the CPPN performed
significantly lower compared to the other encodings. Moreover,
in all three encodings, morphologies tend to fixate faster than the
controllers. The direct encoding promoted both types of adaptation
for longer; this is followed by the L-System, with the CPPN faring
worst. Ultimately, more experiments are required to say more about
the difference in performance and phenotypic diversity between
encodings. This will be useful when evolving robot morphologies
and controllers where a vast search space may be highly convoluted
and difficult to map.
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