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ABSTRACT
Performance analysis of randomised search heuristics is a rapidly

growing and developing field. We contribute to its further devel-

opment by introducing a novel analytical perspective that we call

unlimited budget analysis. It has its roots in the very recently intro-

duced approximation error analysis and bears some similarity to

fixed budget analysis. The focus is on the progress an optimisation

heuristic makes towards a set goal, not on the time it takes to reach

this goal, setting it far apart from runtime analysis. We present the

framework, apply it to simple mutation-based algorithms, covering

both, local and global search. We provide analytical results for a

number of simple example functions for unlimited budget analy-

sis and compare them to results derived within the fixed budget

framework for the same algorithms and functions.
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Performance analysis of randomised search heuristics (RSHs) is

a rapidly growing and developing field. The current mainstream

method is runtime analysis whose purpose is to estimate the number

of function evaluations for obtaining an optimal solution. Recently

an alternative perspective appeared which is to consider solution

quality that an algorithm achieves. There are two ways to measure

solution quality: (1) the expected function value that can be achieved

with a pre-defined number of computational steps, called the fixed

budget setting [4]; (2) the approximation error between the achieved

objective function value and the optimal value [1, 2].

In this paper we present a technique following an idea rooted

from both fixed budget analysis and approximation error: analysing

the distance of the achieved function value to the optimal value de-

pending on the number of computational steps. Since the approach

does not consider a computational budget that is fixed in advance
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and explicitly works for any number of computational steps, we

call it unlimited budget analysis.

Consider a maximisation problem:

max f (x), subject to x ∈ D, (1)

where f (x) is a fitness function such that f (x) < +∞ and D is a

finite state set or a closed set in Rn . Let f ∗ := max{ f (x);x ∈ D}

and D∗
:= {x | f (x) = f ∗}.

RSHs for solving the above optimisation problem can be de-

scribed by a sequence of random variables {X [t ]
; t = 0, 1, . . . }

where X [t ]
represents the solution (or a population of solutions for

population-based RSHs) at the t th step. The fitness of X [t ]
is

f (X [t ]) := max{ f (x);x ∈ X [t ]}

and its expected value f [t ] := E[f (X [t ]). The approximation error

of X [t ]
is e(X [t ]) := | f (X [t ]) − f ∗ | and its expected value e[t ] :=

E[e(X [t ])].

We assume that the sequence { f [t ]; t = 0, 1, . . . } converges to

f ∗. Unlimited budget analysis is to find a lower (or upper) bound

b(t) on the fitness value f [t ] satisfying two conditions: (1) the lower
(or upper) bound holds for any t ∈ [0,+∞); (2) the bound error

| f ∗ − b(t)| converges to 0 as t → +∞.

From the approximation error e[t ] = | f ∗ − f [t ] |, it is obvious

that a bound on e[t ] will lead to a bound on f [t ]. Following the

work on the estimation of the approximation error of EAs [1, 2],

this paper focuses on drawing a bound on f [t ] through a bound on

e[t ].
The convergence rate of the error sequence {e[t ]; t = 0, 1, . . . }

at the t-th generation [3] is r [t ] = e[t+1]/e[t ] if e[t ] , 0. If e[t ] = 0,

X [t ]
is an optimal solution. Based on this rate, we estimate upper

and lower bounds on f [t ] as follows:

Theorem 1. Given an error sequence {e[t ]; t = 0, 1, . . . },

(1) if there exists some λ > 0, e[t+1]/e[t ] ≤ λ for any t , then
f [t ] ≥ f ∗ − e[0]λt .

(2) If there exists some λ > 0, e[t+1]/e[t ] ≥ λ for any t , then
f [t ] ≤ f ∗ − e[0]λt .

Proof. It is sufficient to prove the first claim. From the condi-

tion e[t+1]/e[t ] ≤ λ, we get e[t+1] ≤ e[t ]λ and then e[t ] ≤ e[0]λt .

Equivalently f [t ] ≥ f ∗ − e[0]λt . �

Unlimited budget analysis can do a similar job as fixed budget

analysis. We show this similarity through an example. Consider

random local search (RLS) [4] on maximising the OneMax function,

max f (x) = |x |, x ∈ {0, 1}n, (2)

where x = (x1, · · · , xn ) ∈ {0, 1}n and |x | = x1 + · · · + xn . The
approximation error of x is e(i) = n − i .
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Without loss of generality, we assume that X [t ] = x such that

|x | = i where i < n. Then f (x) = i and e(x) = n − i . The fitness of

X [t+1]
increases if and only if one of the n − i 0-valued bits in x is

flipped. The probability of this event happening is
n−i
n . Denote the

conditional expectation of the fitness change by

∆(x) := E[f (X [t+1]) − f (X [t ]) | X (t ) = x].

Then
e [t+1]
e [t ]
= 1 −

∆(x )
e [t ]

. We have

∆(x) =
n − i

n
· 1, (3)

e [t+1]
e [t ]
= 1 −

∆(x)

e[t ]
= 1 −

1

n
, (4)

e[t ] =

(
1 −

1

n

)t
e[0], (5)

f [t ] = n −

(
1 −

1

n

)t
e[0]. (6)

Jansen and Zarges [4] also studied RLS on the OneMax function

but use a different method. We arrive at the the same result here.

However, in many cases, there exists a significant difference

between fixed budget analysis and unlimited budget analysis. We

show this difference through another example. Consider the (1+1)

EA [4] on maximising the LeadingOnes function.

f (x) =
∑n
i=1

∏i
j=1 x j , x ∈ {0, 1}n (7)

We assume that X [t ] = x which satisfies x1 = 1, · · · , xi =
1, xi+1 = 0 for i < n. The fitness f (x) = i and the error e(x) = n − i .

The fitness of X [t+1]
increases if the leftmost 0-valued bit in x is

flipped into 1 and other bits are unchanged. The probability of

this event happening is 1/n
(
1 − 1

n

)n−1
. Thus, the probability of

f (X [t+1]) > f (X [t ]) is at least 1

n

(
1 − 1

n

)n−1
.

Then we have for any t

∆(x) ≥ 1

n

(
1 − 1

n

)n−1
· 1.

e [t+1]
e [t ]

≤ 1 − 1

n

(
1 − 1

n

)n−1
1

n−i ≤ 1 − 1

n2

(
1 − 1

n

)n−1
, (8)

e[t ] ≤

(
1 −

1

n2

(
1 −

1

n

)n−1)t
e[0], (9)

f [t ] ≥ n −

(
1 −

1

n2

(
1 −

1

n

)n−1)t
e[0], (10)

and lim

t→+∞

�����f ∗ − n +

(
1 −

1

n2

(
1 −

1

n

)n−1)t
e[0]

����� = 0. (11)

We compare the result (10) with the result by fixed budget anal-

ysis [4]. According to Theorem [4, Theorem 13], for any t under a
threshold,

f [t ] = 1 +
2t

n
− o(

t

n
), (12)

but lim

t→+∞

����f ∗ − 1 −
2t

n
+ o(

t

n
)

���� = +∞ , 0. (13)

For LeadingOnes, fixed budget analysis provides a linear approx-

imation of f [t ] for t within a threshold. But for t ∈ [0,+∞), the

relationship between f [t ] and t is nonlinear. Thus, unlimited bud-

get analysis finds an exponential approximation of f [t ] for any t .

We may regard unlimited budget analysis as fixed budget analysis

with unlimited computational budget.

Different from runtime analysis, a bound on f (X [t ]) is related

to the function f (x). Therefore, scaling a function may change the

representation of the bound significantly. We show this change via

an example. Consider RLS on the square function which scales the

OneMax function,

max f (x) = |x |2, x ∈ {0, 1}n . (14)

We assume that X [t ] = x with |x | = i where i < n. Then
f (x) = i2 and e(x) = n2 − i2. x includes n − i 0-valued bits. The

fitness of X [t+1]
increases if and only if one of the n − i 0-valued

bits in x is flipped. The probability of this event happening is
n−i
n .

Then we have

∆(x) =
n − i

n
· [(i + 1)2 − i2], (15)

e [t+1]
e [t ]
= 1 −

n − i

n
·
(i + 1)2 − i2

n2 − i2
≤ 1 −

1

n2
, (16)

e[t ] ≤

(
1 −

1

n2

)t
e[0], (17)

f [t ] ≥ n2 −

(
1 −

1

n2

)t
e[0]. (18)

Notice the lower bound (18) on the square function is different

from the bound (6) on the OneMax function. From this example,

we see that it is easy to apply unlimited budget analysis to scaled

versions of a function. However, scaling might bring a trouble in

fixed budget framework because the existing analysis of OneMax

relies on the linearity of expectation [4].

In summary, we have presented unlimited budget analysis, an

analytical framework to derive results about the expected perfor-

mance, measured by means of function values, of a randomised

search heuristics after an arbitrary number of computational steps.

We have demonstrated the applicability of our method by consider-

ing random local search and the (1+1) EA through three examples.

We observe that for OneMax we obtain the same result as with

fixed budget analysis and that for LeadingOnes the result we obtain

is different from the bound obtained with fixed budget analysis,

where the former is an exponential approximation for t ∈ [0,+∞)

but the later is a linear approximation for t within a threshold. We

also demonstrate that unlimited budget analysis could be easy to

apply to scaled functions.
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