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ABSTRACT
In the era of the big data and e-science revolution, the execution of
such applications known as High Performance Computing (HPC)
is becoming a challenging issue. In order to face these challenges, a
new promising Large Scale Distributed Systems (LSDS) has emerged
suchlike Grid and Cloud Computing. As a matter of fact, these HPC
applications are commonly arranged as a form of interdependent
tasks named workflows. Nevertheless, the new challenging topic is
that the scheduling of these scientific workflows in the LSDS is a
well-known NP-hard problem. The goal of this work is to design
an Non-dominated Sorting Genetic Algorithm Version II (NSGA-
II)-based approach for optimizing a multi objective scheduling of
scientific workflows in hybrid distributed systems. This paper work
deals with the proposition of two execution models: i) A Cumulative
one aiming to improve the Pareto front quality in term of Makespan-
Cost trade-off; ii) An Incremental execution fashion, what kind of
Cost-driven approach leading to a solution diversity of the Pareto
front in the objective space. Experiments conducted with multiple
common scientific workflows point out significant improvement
against the classic NSGA-II algorithm.
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1 INTRODUCTION
Evolutionary Multi-objective Optimization (EMO) algorithms are
the most commonly adopted methods to search for the optimal
trade-off between objectives in the Multi-objective Optimization
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Problem (MOP). For the workflow scheduling problem, a signif-
icant diversity of EMO algorithms were designed [2] [4] [3]. As
long as it is widely used for optimizing MOPs, we adopted the
Non-dominated Sorting Genetic Algorithm Version II (NSGA-II)
[1] algorithm to optimize scientific workflow scheduling in hybrid
computing infrastructures considering Makespan and Economic
Cost as objectives. Actually, we have proposed a typical encoding
better-representing the scheduling solution on a hybrid computing
infrastructure obtained by extending private resources with Cloud
virtual machines. In addition we have designed two execution mod-
els of the NSGA-II algorithm. These models consist of dividing
the hole NSGA-II execution into Blocs in which the initialization
routine is re-processed in a specific manner.

2 PROPOSED APPROACH
Basing on the NSGA-II algorithm that we noted as Standard, we
designed two execution models named Cumulative and Incremental
described as follows:

Our proposed Cumulative execution model consists of dividing
the total iteration number Nд into Nrep Standard NSGA-II Blocs.
The Pareto front resulted by executing the ith Blocwill be completed
by initializing the missing solutions to get the initial population of
the Bloc (i + 1). This operation is repeated like so until executing an
overallNд iterations. The idea is to make a refresh of generations by
repeating the initialization process and by conserving the obtained
non-dominated front in each Bloc. By designing this model, we don’t
aim to preserve the found Pareto front because the elitism aspect
of NSGA-II does, but the novelty is to refresh the population by a
new initialized solutions or individuals to improve the descending
of the new population.

On the other hand, the Incremental model is based on the same
idea, except that we consider a different set of VMs in the initializa-
tion process in each Bloc. In fact, while Cumulative model searches
scheduling solutions basing on all paid machine images from the
beginning, the Incremental model append them incrementally by
adding the lower priced VMs then the higher ones in each Bloc.
In such cost-driven approach, we try to determine the best solu-
tions for different hybrid resource sets by increasing the execution
budget.

3 EXPERIMENTATION AND DISCUSSION
To evaluate our proposed approaches, different simulation scenarios
was carried out on 5 types of synthetic workflows with various
number of workflow nodes. So that we make this comparison, we
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(a) Epigenomics 24

4000 8000 12000 16000 20000 24000 28000
Makespan(s)

100

200

300

400

500

600

C
os

t(1
0-

3  
$)

IncrementalV2
IncrementalV1
Standard
CumulativeV2
CumulativeV1

(b) Epigenomics 46

40000 80000 120000 160000 200000 240000 280000
Makespan(s)

0

1000

2000

3000

4000

5000

C
os

t(1
0-

3  
$)

IncrementalV2
IncrementalV1
Standard
CumulativeV2
CumulativeV1

(c) Epigenomics 100

600000 800000 1000000 1200000 1400000 1600000
Makespan(s)

10000

20000

30000

40000

50000

C
os

t(1
0-

3  
$)

IncrementalV2
IncrementalV1
Standard
CumulativeV2
CumulativeV1
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Figure 1: Results with Different Workflow types

fixed the total number of iterations to 2500 for all the scenarios and
a population size to 100. In fact, we note CumulativeV1 a simulation
that performs 5 Blocs of 500 iterations while the CumulativeV2
executes 25 Blocs of 100 iterations for each. On the other hand, the
Incremental model will be realized also in two ways : the first one
named IncremetalV1 in which we operate 5 Blocs of 500 iterations.
The second way, noted IncrementalV2, contains also 5 Blocs. But
here, each Bloc of 500 iterations will be carried out in Cumulative
way. Finally, the Standard NSGA-II will be run with 2500 successive
iterations as a single Bloc.

As illustrated in Figure 1 and in most cases, the Cumulative
model outperforms the rest of execution models in term of Pareto
dominance. In addition, good results of the Cumulative model are
especially presented by the CumulativeV1 scenario which slightly
better than the CumulativeV2 one.

Taking the Epigenomics workflow as an example of application,
we will discuss the manner how our proposed approaches change
by increasing the number of workflow nodes and the task load. As
we can see in Figures 1a, 1b, 1c and 1d, the Cumulative model with
its two versions gives a solution fronts more and more better than
Standard model as long as we increase the node number from 24 to
997 nodes and especially for heavy tasks load in Figures 1c and 1d
in which we achieve a gain up to 24.8% in time against Standard
model.

Although Incremental model performance was not perfect in
some simulations in terms of Pareto dominance, we still believe
that it presents some advantages and these results need to be in-
terpreted with caution. In fact, this model was designed to find
solutions with lower budgets, for that we get a part of solutions

show lower costs and relatively higher makespan as we can see
especially for Montage and CyberShake workflows in Figures 1e
and 1h. The lower cost is evidently explained by the lower number
of paid resources in different Blocs while the noteworthy higher
makespan is simply explained by our choice of the free resources’
configuration which is lower than paid ones.

To sum up, the called Cumulative model aims to enhance the
solution quality by initializing new solutions in addition to the gen-
erated Pareto front after each Bloc of iterations. This model proves
its efficiency regards to the standard NSGA-II as experiments show.
The second approach named Incremental was realized in order to
lease VM progressively (in each Bloc) trying to minimize execution
time and controlling the increase of cost. This cost-driven execution
fashion presents good results according to the solutions diversity
but needs to be improved to generate more optimal solutions in
terms of Pareto dominance.
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