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ABSTRACT
While the performance of many neural network and machine learn-
ing schemes has been improved through the automated design
of various components of their architectures, the automated im-
provement of Adaptive Resonance Theory (ART) neural networks
remains relatively unexplored. Recent work introduced a genetic
programming (GP) approach to improve the performance of the
Fuzzy ART neural network employing a hyper-heuristic approach
to tailor Fuzzy ART’s category choice function to specific problems.
The GP method showed promising results. However, GP is not the
only tool that can be used for automatic improvement. Among other
methods, Nested Monte Carlo Search (NMCS) was recently applied
to expression discovery and outperformed traditional evolutionary
approaches by finding better solutions in fewer evaluations. This
work applies NMCS to the discovery of new Fuzzy ART category
choice functions targeted to specific problems with results demon-
strating its ability to find better performing Fuzzy ART networks
than the GP approach.
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1 BACKGROUND AND OBJECTIVES
Adaptive Resonance Theory (ART) is a biologically-plausible theory
that models how the brain can autonomously learn to categorize,
recognize, and predict objects and events in a dynamic and changing
environment [1]. There are various ART-inspired neural network
models in the literature. However, as with many other neural net-
work models, there may exist optimal ART design parameters that
are yet to be discovered.

Numerous approaches have been introduced that automatically
design neural networks; yet, the automatic design of ART and
ART-based networks remains relatively unexplored. Previous work
evolved and trained parameters and weights in ART based net-
works [7, 8, 12, 14]. Recently, a novel hyper-heuristic approach
was introduced that employed genetic programming (GP) to evolve
the category choice function (CCF) in Fuzzy ART [2] for specific
problem classes [6]. The GP approach showed promising results
leading to improved Fuzzy ART performance. While GP is the most
commonly used meta-heuristic applied to automatic design and
improvement of algorithms, the exploration of the algorithm space
may well be addressed with other search methods. This work pur-
sues the Nested Monte Carlo Search Expression Discovery (NMCS-
ED) approach to search for new Fuzzy ART CCFs.

The NMCS-ED, an alternative to other hyper-heuristic methods,
employs a method inspired by NMCS to find expressions [3, 4]. At
the lowest level, NMCS-ED randomly samples the expression and
applies nested searches at higher levels [3, 4]. It maintains a good
balance between exploration and exploitation, and inherently has a
natural restart strategy [3, 4]. One of the challenges related to GP is
parameter optimization. GP algorithms often take many parameters
such as population size, and mutation probability. In contrast, other
than the level of the search, NMCS-ED in its basic form only takes
a single parameter: the maximum number of nodes (n) that an
expression in a tree form can have. The tree is expanded during the
iterations of the algorithm until the tree is full or reaches n nodes.
Since its introduction, NMCS-ED was applied to various problems
and it was shown that it has the capability of producing equally
good, or better, solutions in less evaluations than GP [3–5, 9–11].

Fuzzy ART is an unsupervised learning network consisting of an
input representation layer and a category representation layer [2].
This study uses NMCS-ED to automatically design the Fuzzy ART
CCF in Eq. (1) that was previously evolved using GP [6]. The CCF
measures the activation of a category with weight vector w j in
response to an input pattern vectorA, where α is a scalar algorithm
parameter known as the choice parameter.
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Table 1: Statistical test comparison of Adjusted Rand-Index
results for the NMCS-ED and GP approaches and the base-
line. With p = 0.05 as the cutoff for statistical significance,
values underlined significantly outperformed the baseline,
values in bold significantly outperformed the GP approach.

dataset approach avg stdev p values to baseline p values to GP

Iris baseline 0.526977 0.042583 – –
Iris GP 0.526695 0.044548 9.886139e-01 –
Iris NMCS-ED 16 0.545040 0.040105 3.417641e-01 3.459611e-01
Iris NMCS-ED 40 0.554020 0.035245 1.392459e-01 1.455892e-01
Iris NMCS-ED 100 0.563740 0.040259 6.273904e-02 6.679941e-02

Wine baseline 0.133080 0.051846 – –
Wine GP 0.263992 0.058357 4.838685e-05 –
Wine NMCS-ED 16 0.240686 0.071779 1.191519e-03 4.360158e-01
Wine NMCS-ED 40 0.317218 0.050713 2.327790e-07 4.302810e-02
Wine NMCS-ED 100 0.459520 0.053130 4.546132e-11 3.295069e-07

Glass baseline 0.148816 0.030336 – –
Glass GP 0.139372 0.028285 4.807511e-01 –
Glass NMCS-ED 16 0.175204 0.024102 4.506389e-02 6.904851e-03
Glass NMCS-ED 40 0.178915 0.023738 2.369253e-02 3.289170e-03
Glass NMCS-ED 100 0.197412 0.018720 4.207209e-04 3.847010e-05

Tj =
|A ∧w j |

α + |w j |
(1)

The NMCS-ED algorithm introduced in [3] uses a stack based
approach. To automatically generate new CCFs, we represent them
as parse trees with terminal nodes A,w j , and α , and non-terminal
nodes for addition, subtraction, multiplication, division, Fuzzy AND,
Fuzzy OR, and L1 Norm operators [6]. To ensure the compatibility
of the arguments and operators, and to generate valid expressions,
we modified the NMCS-ED algorithm from [3] to use a tree-based
approach capable of generating strongly-typed expressions.

2 EXPERIMENTS AND CONCLUSIONS
In our experiments, we capped the number of evaluations at 10,000
since that is approximately the amount of evaluations that was
employed in the GP approach. For a fair comparison, we used the
same method of evaluation of the newly generated CCFs as was
used in [6], and used the same datasets for training and testing -
the Iris, Wine, and Glass datasets from the UCI Machine Learning
Repository [13]. Furthermore, we used the same values for the Fuzzy
ART parameters α , β , and ρ as those found for the GP approach
for each of the datasets [6]. Since n is the unknown parameter in
NMCS-ED that is to be configured, we experimented with three
different values - 100 being an approximation of tree height selected
in [6] and 40 and 16 values selected to evaluate the quality of smaller
expressions, since smaller expressions require shorter run times.

Table 1 shows the baseline values for standard Fuzzy ART and
averages of ten runs of the GP approach on each of the used
datasets [6]. Further, it shows the averages of the ten runs of the
NMCS-ED approach with n ∈ { 16, 40, 100 }, and t-student statisti-
cal test results comparing the two approaches and the baselines. We
used a two-tailed t-student statistical test with p=0.05 to determine
the statistical significance (same statistical test setting as in [6]).

Per Table 1, on the Iris dataset the average performance of the
Fuzzy ART networks with CCFs found using NMCS-ED was statisti-
cally similar to the performance of networks with CCFs found using
GP. The averages of the performances of the expressions found

using NMCS-ED improved with larger n. On the Wine dataset, for
n = 16, NMCS-ED performed statistically similar to GP. On the
other hand, for n = 40, 100, NMCS-ED statistically significantly
outperformed GP. On the Glass dataset, NMCS-ED statistically sig-
nificantly outperformed GP for all n tested. Our experiments were
capped with maximum allowed run time of seven days. Seven out
of the ten experiments on the Glass dataset with n = 100 did not
finish in that time, yet, several of those experiments found solutions
significantly better than the baseline, and even significantly better
than the ones found by the GP approach. Furthermore, the overall
best performing Fuzzy ART’s CCFs for each of the datasets were
found using the NMCS-ED approach.

This work examined the use of the NMCS-ED algorithm applied
to the automated design of CCFs for the Fuzzy ART neural net-
work. The fitness function for the optimization was defined as the
Adjusted Rand Index; thus, the category choice functions were tai-
lored in a supervised manner. Results show that, for the benchmark
datasets experimented with, the networks embedded with the func-
tions automatically redesigned by the NMCS yielded statistically
comparable or superior performance to the ones constructed by the
GP as well as the canonical Fuzzy ART. Thus, the NMCS-ED based
hyper-heuristic may serve as a good alternative to GP in automatic
enhancement and design of ART-based systems.
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