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ABSTRACT
The CMA-ES algorithm searches a fitness landscape by sampling
from a multivariate normal distribution and updating its mean by
taking a weighted average of the highest fitness candidate solutions.
In this work, we explore the possibility of using Genetic Program-
ming to evolve new mean-update selection methods that take into
account information other than just raw fitness values. These re-
sults show that CMA-ES can be tuned to specific problem classes
to achieve better results.
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1 INTRODUCTION
In Evolutionary Algorithms (EA’s), selection functions play a signif-
icant role in determining the EA’s performance [3]. New selection
algorithms can be designed in cases where the performance offered
by existing algorithms is insufficient, even with well-tuned param-
eters. However, the full space of selection algorithms is effectively
unlimited, and so it is highly unlikely that any conventional algo-
rithm offers optimal selection behavior, given a specific problem.
A performance gain is likely to be attained by exploring the space
of selection algorithms to find one that offers better performance
than any conventional algorithm. Past work has confirmed this
hypothesis, prompting our approach to use a hyper-heuristic to
explore the space of new selection functions [4].
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2 ENCODING SELECTION FUNCTIONS
We developed a generalized format to represent a selection function,
which can encode both a number of traditional selection functions
as well as novel selection functions. The representation consists of
two major parts. The first part is a binary Koza-style GP-Tree [2]
encoding a mathematical function. All of the function inputs are
real-valued numbers, and all of the operators in the GP-Tree operate
on and return real-valued numbers. The terminals of the GP-Tree
include various factors pertinent to a single individual of the pop-
ulation, including the individual’s fitness, the individual’s fitness
ranking among the population members, the Euclidean distance to
the average genome, and the individual’s age, in generations. The
possible terminal inputs also include information pertinent to the
evolution at large, including the total size of the population, the
current generation, the maximum and minimum fitness values in
the population, and the sum of the individuals’ fitness values. Con-
stants are included, as well as random number generating terminals.
Binary operators in the GP-Tree include various arithmetic and
other mathematical functions. When evaluated, the mathematical
function encoded by the GP-Tree returns a single real-valued num-
ber, corresponding to the relative “desirability” of the individual
whose data was input into the function.

The second part of the evolved selection function is a method of
selecting individuals based on their desirabilities, as calculated by
the mathematical function encoded by the GP-Tree. The possible
selection methods are inspired by traditional selection functions.
Some selection methods will select with replacement, allowing a
single individual to be selected more than once per generation.

To perform selection on a population, the function encoded by
the GP-Tree is evaluated once for each member of the popula-
tion, assigning a desirability score to each individual. The selection
method is then used to select individuals based on the individu-
als’ desirability scores. The selected individuals can then be used
for recombination, as the survivors for the next generation, or for
any other update to the internal variables that depend on a chosen
subset of the population.

3 SEARCH METHODOLOGY
We use a meta-EA to develop the selection functions, treating each
complete selection function as a member of a higher-order pop-
ulation. After generating an initial pool of randomly constructed
selection functions, the quality of each complete selection function
is determined, and well-performing selection functions are chosen
to recombine and mutate into new candidate selection functions.
The size of the trees is constrained using parsimony pressure.
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Figure 1: Comparing CMA-ES performance for base, meta-
EA evolved, and expanded terminal meta-EA evolved cases.

We target the CMA-ES algorithm for improvement, evolving a
new selection function for the mean-update algorithm. The qual-
ity of each selection function is determined by running CMA-ES
on a suite of static training instances selected from the Compar-
ing Continuous Optimizers (COCO) platform used for the GECCO
Workshops on Real-Parameter Black-Box Optimization Benchmark-
ing [1]. Each of the 24 noiseless benchmark problem classes in
COCO is offered in multiple dimensions, and for each dimension,
multiple problem instances are present. We select 11 of the 24 prob-
lem classes and use dimensions 2, 3, 5, and 10. The problem classes
were selected by running unmodified CMA-ES on each of the 24
problem classes, selecting those where it failed to solve some di-
mension D ≤ 10 on at least half of the trial runs. For each class and
dimension, we set aside some instances to test for generalization.

A second experiment investigated the effects of expanding the
terminal set. New terminals tested were a genome’s Euclidean dis-
tance to the best genome found during the run, generations since
the last improvement in fitness, and the last generation’s average
fitness. The effects of adding and removing terminals were tested
on function classes 3, 16, 19, and 21 with D = 2. These were the
function classes where neither the modified nor the unmodified
CMA-ES reached a 100% success rate.

4 RESULTS AND DISCUSSION
For function classes 4 and 19, the success rate of CMA-ES increased
by 20-30% when modified with the evolved selection function at
D = 2, but performed similarly to unmodified CMA-ES at other
dimensionalities. For function classes 20 and 21, a performance
increase is seen on dimensionalities D = 2, 3, and 5, but not D = 10.
For function classes 6 and 12, performance is similar for D = 2, 3,
and 5, but forD = 10, there is a significant performance increase: on
function class 6, the success rate increased from 0% to around 96%,
and on function class 12, the success rate increased from 18-67%,
varying across function instances, to 100% for all function instances.
For the remaining function classes, there was no major difference in
success rate. These cases involved highly multimodal functions, and
CMA-ES likely requires some other improvement to better traverse

the global structures of these functions. F = 21, D = 10 is the one
case where CMA-ES performed worse than unmodified CMA-ES.
This effect is likely due to overspecialization to the set of training
instances.

In the second experiment, including the terminal for Euclidean
distance to the best-found genome resulted in a significant boost in
performance, but only if Euclidean distance to the average genome
was also included. Function class 3’s success rate went from 32.09%
to 58.51%, function class 16’s from 65.57% to 68.91%, function class
19’s from 50.21% to 59.20%, and function class 23’s from 71.56%
to 86.07%. The addition of the two terminals did not significantly
increase the number of generations needed for the meta-EA. The
ending performances on function class 19 are summarized in Fig-
ure 1.

The benefit of the new terminals is clear from the four function
classes tested. The fact that the two Euclidean distance terminals
only boost performance significantly when together suggests that
the benefit of adding terminals can be highly dependent on the
other terminals in the terminal set. Further investigation into new
terminals could lead to significant improvements in the modified
CMAE-ES’s performance.

5 CONCLUSIONS
We hypothesized that a search through the space of selection func-
tions could improve the performance of CMA-ES on a particular
problem class by discovering a specialized selection function with
which to modify the mean-update function of CMA-ES. We devel-
oped a representation of selection functions that utilizes a GP-Tree
and selection method and used a meta-EA to search through the
space of selection functions in this representation.

We have shown that it is possible to generate new selection
functions and tune the mean-update function of CMA-ES to signifi-
cantly outperform conventional strategies on a selected benchmark
problem. We have also shown that this performance increase will
generalize to similar problems in the same problem class. Thus,
if one expects to run CMA-ES, or any EA, on the same problem
class many times, one might gain a performance increase by doing
a priori calculation to develop a specialized selection algorithm,
which would then enable an EA to perform better on instances of
that problem class. However, we have also shown that, for certain
functions, replacing only the selection function may not yield sig-
nificant performance improvements. Careful consideration must be
given to determine what the effect of tuning the selection scheme
will be on the performance of a given EA and whether such tuning
will result in a substantial performance increase.
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