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ABSTRACT
Dynamic graphs are an essential tool for representing a wide vari-
ety of concepts that change over time. In the case of static graph
representations, random graph models are often useful for analyz-
ing and predicting the characteristics of a given network. Even
though random dynamic graph models are a trending research
topic, the field is still relatively unexplored. The selection of avail-
able models is limited and manually developing a model for a new
application can be difficult and time-consuming. This work lever-
ages hyper-heuristic techniques to automate the design of novel
random dynamic graph models. A genetic programming approach
is used to evolve custom heuristics that emulate the behavior of
real-world dynamic networks.

CCS CONCEPTS
•Mathematics of computing→Random graphs; • Theory of
computation → Dynamic graph algorithms; • Software and
its engineering→ Genetic programming.
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1 INTRODUCTION
Random graph models are an invaluable tool for studying and
anticipating the development of networks in a wide variety of
applications [3]. More specifically, random dynamic graph models
capture the behavior of a network that changes over time as vertices
and edges are added and removed. Random graph modeling for
dynamic applications is an active research area, but the field is still
relatively young. The proper selection of a random graph model

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3322049

Figure 1: Example random graph heuristic parse tree.

is critical for accuracy of the representation, but the options for
dynamic versions of these models are currently limited.

Previous work has demonstrated the potential of using gener-
ative hyper-heuristic searches to automate the design of random
graph models [1, 4] However, these approaches have only been
applied to static graph models. This work investigates the use of
genetic programming (GP) to evolve novel graph update heuristics
that accurately mimic the behavior of a target dynamic network.
Results are presented from two applications that involve modeling
real-world computer network activity.

2 METHODOLOGY
A population of graph update algorithms is evolved to mimic the
behavior of a set of dynamic input graphs. Solutions are represented
using strongly typed Koza-style parse trees. See Figure 1 for an
example parse tree representation of a basic graph update heuristic.

Solutions are evaluated by executing them on a set of input
graphs and comparing the output to the target graph for the next
time step. Four objective valuesmeasure the similarity of the evolved
and target behaviors. Degree centrality (DC) measures the similar-
ity in the distribution of vertex degree values. The edge addition
(EA) and edge removal (ER) objectives measure the similarity in
the number of edges added or removed, respectively, at each time
step. Finally, the size difference (SD) objective compares the overall
change in the number of edges at each time step. The DC, EA, and
ER objectives are compared using the p-value from Kolmogorov-
Smirnov tests, which are maximized when the two samples have
similar distributions. SD is the absolute percent error in the number
of edges averaged over each time step and subtracted from one to
convert it to a maximization objective.

To mitigate overfitting, objective values are scaled to the score
achieved by comparingmultiple instances of the target graph against
each other. The formula for this scaling isO = 1− |OT−OE |

OT
whereO

is an objective in {DC, EA, ER, SD}, OT is the value for that objec-
tive achieved by the target dynamic graph evaluated against itself,
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andOE is the value for that objective achieved by the evolved model.
The absolute difference penalizes solutions that have inflated ob-
jective values as a result of being overfitted on the test cases they
were evaluated against. Final objective values are averaged over a
configurable number of test cases to measure the robustness of the
evolved graph model.

The primitive set used was initially inspired by previous work
evolving static random graph models [1, 4]. Terminal operations in-
clude ephemeral constants (e.g., numbers, booleans), graph metrics
(e.g., average degree), and graph elements (i.e., nodes and edges).
Function primitives include mathematical and logical operations
(e.g., multiply, and) control flow operations (e.g., conditional branch-
ing, operation sequences), collection manipulation (e.g., node list
concatenation), and graph operations (e.g., add/remove edges).

3 EXPERIMENT
This work was applied to modeling the dynamic network behavior
of two applications taken from data collected on the computer net-
work at Los Alamos National Laboratory (LANL) [5] The first appli-
cation involves communication between devices on the network in
the form of NetFlow sessions. The second represents authentication
events that occur when an account is used to access a computer via
another, such as a remote desktop session. A static graph is gener-
ated for six minute increments during normal business hours (7am
to 5pm) that contains an edge connecting two computer vertices
if traffic or authentication is observed between those computers
during that time window. To keep the evaluation time manageable
for this proof-of-concept, the resulting graphs are reduced to activ-
ity between the most active 1000 computers. These static graphs
are combined to produce a dynamic graph with 100 time steps for
each of the 50 highest activity days. The down-selection in terms of
days is done to remove non-business days, such as weekends and
holidays, and provide a more consistent target for the evolutionary
process to model. During solution evaluation, a subset of these days
is chosen randomly without replacement to generate test cases. The
evolution in this work used the Non-dominated Sorting Genetic
Algorithm (NSGA-II) [2] with a population size of 50, a 50% of
choosing recombination or mutation, 30 test cases per evaluation,
and terminated after 10000 evaluations.

4 RESULTS
Figure 2 shows the range of objective values achieved by the final
population of solutions for both applications. The shaded region
indicates the range of values (minimum and maximum) and the
black line shows the median. Since these values are scaled to the
objective values achieved by evaluating the target against itself,
objective values closer to one indicate more accurate modeling.
For both of these applications, the SD objective appears to be the
easiest to optimize. The DC objective seems to be the hardest; this
could be the result of lacking operations that are specifically aware
of the graph’s degree distribution.

5 CONCLUSION
Random graph models are an invaluable tool for a variety of applica-
tions. When modeling a dynamic concept with a random graph, the
appropriate model must be selected for an accurate representation.
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Figure 2: Range of objective values achieved by the final pop-
ulation of solutions from an example run for each applica-
tion. The shaded region indicates the range between themin-
imum and maximum values and the black line shows the
median.

However, the quality and variety of appropriate dynamic models
is limited. Accurate models for new applications can be manually
developed, but this process can be difficult and time-consuming.
This work investigated the potential of hyper-heuristics for au-
tomating the design of generative models for random dynamic
graphs. Results on enterprise network applications demonstrate
that the approach has potential for accurately modeling real-world
phenomenon.
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