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ABSTRACT
Neighborhood operators play a crucial role in defining effective Lo-
cal Search solvers, allowing one to limit the explored search space
and prune the fitness landscape. Still, there is no accepted formal
representation of such operators: they are usually modeled as al-
gorithms in procedural language, lacking in compositionality and
readability. In this paper we outline a new formalization capable of
representing several neighborhood operators eschewing their cod-
ing in a full Turing complete language. The expressiveness of our
proposal stems from a rich problem representation, as used in Con-
straint Programming models. We compare our system to competing
approaches and show a clear increment in expressiveness.
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1 INTRODUCTION
Local Search is a family of heuristic algorithms, typically used to
find approximate solutions for hard optimization problems. The
common core of those methods consists in finding an initial sub-
optimal solution (called configuration in the rest of the paper) and
iteratively improving it by exploring similar configurations, called
neighbors. The most efficient neighborhood operators are problem
specific and have to be defined and tuned by hand, often directly in
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the form of a computer program. Such an approach suffers from
poor reusability and does not generalize well to new domains. The
goal of this paper is to introduce a new formal representation for
neighborhood operators, one which exploits the structure of the
problem under consideration.

2 NDL LANGUAGE
The NDL (Neighborhood Definition Language, pronounced noodle)
language discourses over points in the search space of a heuristic
search process. It is designed to exploit syntactical structure of a
problem represented as a Constraint Programming model.

All first-order terms in the NDL language operate on a modified
constraint graph (called the Typed Constraint Graph), enriched with
vertex and edge labels corresponding accordingly to variables’ and
constraints’ types identified in the problem. We say that variables
share a type when they occur in the same data structure (e.g. array)
at the modeling language level. Constraints are labeled based on
the context, they have been stated in, i.e. if they were asserted in a
same aggregation function or came from decomposition of a same
global constraint.

The atomic NDL operations are called moves and consist of
selectors andmodifiers chained via functional composition. Selector
is a non-deterministic function able to focus on a specific part of the
typed constraint graph, selecting variable or constraint based on
their type and position in the graph. Modifiers perturb the current
configuration by changing value of the selected variables. Due to
the non-deterministic nature, single move is able to express the
whole neighborhood, but is limited to changes of a fixed size only
as there is no control structures involved in the process.

To express more interesting neighborhood operators, moves can
be combined by means of the second-order combinators:

• Selector Quantifiers exploit selectors’ non-determinism and
performs a given move over all possible results of given
selector function.

• The Least Fixpoint Operator explores graph in a breadth-first
search manner, performing given move on each visited edge
(constraint).

In general, move combinators are primitively recursive and apply
specific moves repeatedly over different parts the graph, bounded
eventually to finish because of its’ finite size. Despite this limitation,
they are sufficient to represent non-trivial neighborhood of vari-
able size, like 2-opt operator used commonly in traveling salesman
problem or kempe chain, a popular graph coloring neighborhood
operator.
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3 COMPARISONWITH RELATED SOLUTIONS
There is existing work which aims at extracting helpers for a lo-
cal search procedure, from the structure of the underlying prob-
lem. However, many of the existing solutions are incomparable to
NDL because of the different design goals. Neighborhood Combi-
nators [4] extend OscaR [6] solver with a declarative language en-
abling user to combine existing neighborhoods, but with no means
to define new operators. On the other hand, recently there has
been proposed system based on the Essence modeling language [2],
which samples many promising operators using a portfolio strat-
egy, avoiding representing the complex neighborhoods explicitly.
Rest of this section will focus on two, most relevant systems and
compare them with NDL in terms of the expressive power.

OptaPlanner [1] is a hybrid solver configurable by means of XML
files. It supports several search strategies, including local search,
and allows to define the neighborhood in a declarative manner as a
composition of basic moves. There are several predefined moves
applicable to common optimization problems, but to add new ones,
one has to implement them in the Java language.

The Neighborhood Definition Language shares many similar-
ities with the OptaPlanner’s XML approach. In both languages
the moves are composed of variable/value selectors and modifiers
(“move selectors” in the OptaPlanner terminology). Besides the
basic perturbations, like a value swap/change, OptaPlanner also
defines more complex domain-specific move selectors like 2-opt or
group swaps/changes that can be used to implement row/column
group operations. Another noticeable difference is that selectors do
not exploit the constraint structure and can only refer to variable
types and values. The lack of more generic combinators makes it im-
possible to define new complex neighborhoods such as kempe chain.
Consequently, OptaPlanner definitions are more coarse-grained,
requiring several interesting and useful operators to be directly
implemented in the low-level Java programming language.

Declarative Neighborhoods [3] are designed to extend MiniZ-
inc [5] with neighborhood operators represented in a declarative
manner. The neighborhood operator is represented as a constraint
satisfaction problem itself, with constraints corresponding to rela-
tions between the neighbors. Such representation integrates well
into a Constraint Programming model, allowing one to put addi-
tional requirements on the neighborhood relation, i.e. every neigh-
bor has to satisfy a set of constraints or that the neighborhood
operator requires some constraints to be satisfied before it may be
applied. This way, the neighborhood can be easily pruned and spe-
cific constraints can explicitly be made invariant. At the same time,
such a pruning relies on solving a constraint satisfaction problem,
which in the general case is an NP-complete procedure and may be
computationally prohibitive. The main disadvantage of the Declar-
ative Neighborhoods representation, is that neighborhood operator
(being a Constraint Programming model itself), cannot involve any
kind of recursion, even one as limited as the move combinators
approach used in NDL. This greatly restricts the expressiveness of
the language, limiting it only to a fixed number of perturbations,
similar to a single NDL move. The language may still be extended
to include more complex moves (as it is done in OptaPlanner) like
column or row swaps, with the restriction that they perform only
a fixed number of changes.

Table 1 compares the expressiveness of the aforementioned mod-
eling languages on wide known neighborhood operators.

Table 1: Short comparison of the expressiveness based on the
presented examples. Declarative Neighborhoods requires
the column swap to be re-implemented per problem in-
stance.

NDL OptaPlanner DN
kempe chain ✓ x x
column swap ✓ ✓ ✓

2-opt ✓ ✓ x

4 SUMMARY
In this paper we have presented the elements of the Neighborhood
Definition Language — a formal language capable of representing
the Local Search neighborhood operators in a fine-grained man-
ner. Compared to the general programming languages, NDL has
a well defined semantics and is limited to primitive recursion, ef-
fectively leading to always terminating total programs. Compared
to other declarative approaches, it is much more self-contained
and expressive enough to represent even complex neighborhood
operators. Such results have been achieved partly with a rich prob-
lem representation borrowed from the Constraint Programming
formulation, and partly with a limited set of recursion schemes,
effectively exploring a problem’s structure.

Future research will focus on automated methods for finding
problem-specific NDL operators, by means of program synthesis
algorithms. Most notably, there is ongoing work on combining Ge-
netic Programming algorithms with type information embedded in
the model, by means of Grammar Evolution and related techniques.
Finally, a prototype implementation is being worked on, allowing
for some experimentation and evaluation of the NDL performance,
to specify neighborhoods.

At the same time, we are pursuing the integration with modern
modeling languages and solvers. The most important issues include
extraction methods, capable of creating a Typed Constraint Net-
work based on the Constraint Programming models and injecting
arbitrary NDL operators into currently used Local Search routines.
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