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ABSTRACT
Artificial life (A-life) simulations present a natural way to study
interesting phenomena emerging in a population of evolving agents.
In this paper, we investigate whether allowing A-life agents to se-
lect mates can extend the lifetime of a population. In our approach,
each agent evaluates potential mates via a preference function. The
role of this function is to map information about an agent and its
candidate mate to a scalar preference for deciding whether or not
to form an offspring. We encode the parameters of the preference
function genetically within each agent, thus allowing such prefer-
ences to be agent-specific as well as evolving over time. We evaluate
this approach in a simple predator-prey A-life environment and
demonstrate that the ability to evolve a per-agent mate-selection
preference function indeed significantly increases the extinction
time of the population. Additionally, an inspection of the evolved
preference function parameters shows that agents evolve to favor
mates who have survival traits.
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1 INTRODUCTION
Our world is becoming saturated with smart, interconnected, Arti-
ficial Intelligence (AI)-driven devices. With the emergence of vast
networks of such agents comes the potential of interesting emergent
behavior among them. This potential raises important questions.
What will this behavior look like? Will only simple behavior de-
velop or could we see something complex emerging? How will this
impact our society? Artificial life (A-life) simulations are one way to
study such phenomena. A-life allows the study of both single- and
multi-agent learning at multiple timescales: within an agent’s life-
time (e.g., via reinforcement learning) as well as across generations
of agents via genetic search [1]. The potential of emergent collec-
tive behavior is a powerful provision of A-life since even simple
agents acting according to simple rules can produce a population
that exhibits complex behavior (e.g., Conway’s Game of Life [2] and
Wolfram’s cellular automaton rule 110 [8]). Another advantage of
A-life simulations is that they remove the need for hand-designed
fitness function which has applications in procedural content gen-
eration for video games [9].

While A-life eliminates the basic genetic search’s need for an
explicitly designed fitness function (in A-life the fitness function
is implicitly induced by the "physics" of the environment), it still
requires a mechanism for mate selection for sexual agent repro-
duction. Mate selection is important for ensuring the diversity of
the gene pool as well as protecting innovation as it matures. For
instance, the well known NEAT algorithm uses speciation as a
part of its mating strategy [5]. One can port speciation and other
hand-designed mate-selection strategies to A-life. In the spirit of
evolutionary computation, we propose a different approach: we
genetically encode a preference function in each agent thus allow-
ing evolution to find good mate-selection strategies. We implement
and evaluate our approach in an A-life setting for the reasons listed
earlier. We note that a similar approach can be applied in a syn-
chronous evolution scenario with discrete generations such as a
scenario where NEAT would be applied.

2 RELATEDWORK
Mate selection has been previously studied before in the context of
evolutionary methods and A-life. Huang empirically evaluated sev-
eral methods of performing mate selection in conventional genetic
algorithms [4]. However, none of the evaluated methods involves
learning to perform mate selection. Guntly and Tauritz proposed a
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Figure 1: Populations survival curves.

way of directly learning how to perform mate selection [3]. How-
ever, their method requires agents to be able to determine the fitness
of the offspring of a pairing directly. In Werner and Todd’s work
on artificial birds, male agents communicate with females through
songs and females choose mates based on the songs they prefer [6].
However, there are no additional survival pressures on the agents.

3 PROPOSED APPROACH
We propose extending the Evolutionary Reinforcement Learning
paradigm of Ackley and Littman [1] to provide agents with, in
addition to an action and an evaluation network, a preference net-
work that learns a linear mapping between some combination of
the agents genomes (Ga ∈ Rn ) with a candidate mate’s genomes
(Gc ∈ Rn ) to a scalar value. The weights of this network can
be learned evolutionarily. We use four different combinations of
genomes as input to the preference network:

Other genome Gc ∈ R
n

Absolute difference |Ga − Gc | ∈ R
n

Squared difference (Ga − Gc)
2 ∈ Rn

Euclidean distance ∥Ga − Gc∥ ∈ R

4 RESULTS
Figures 1 and Table 1 show the results of an experiment on a wolf
sheep predation model implemented in NetLogo [7] in which the
four different combination functions, as well as the random mating
baseline, were each given 125 unique populations and were allowed
to proceed until extinction. Here there is a significant difference
between the average survival time of each of absolute difference,
other genome, and squared difference and each of Euclidean dis-
tance and random (p < 0.01 using two-tailed t-test with Bonferroni
corrections). The lack of a meaningful gap between the average sur-
vival time of each of absolute difference, other genome, and squared
difference suggests that some form of co-evolution may be occur-
ring between the whole genome and the portion of the genome
that deals with the preference network weights. More investigation
is required to determine if this is, in fact, the case.

One reason why Euclidean distance performed so poorly is that
the preference network under this way of combining genomes is
restricted to learning a single weight, so the preference of an agent
for another agent is likely to be dominated by irrelevant features
of that agent’s genome.

Table 1: Population survival times.

Preference function Mean population survival time
Other genome 2589.5 ± 100.0
Absolute difference 2521.0 ± 94.3
Squared difference 2340.4 ± 90.0
Euclidean distance 1878.9 ± 64.5
Random 1761.0 ± 57.2

Noting that the other-genome combination function performed
well, we conducted a post hoc analysis of what traits agents in the
30 longest living populations evolved to seek or avoid in potential
mates. We noted that within these populations sheep evolved to
seek other sheep that had survival traits. For example, they evolved
to seek mates who assigned a higher value to states where they had
more energy. They also evolved to avoid mates who preferred to
mate when distant to grass.

5 CONCLUSIONS
Evolutionary methods are commonly used in A-life. However, the
performance of these methods can depend on the mate-selection
strategy employed by agents. In this work we allowed agents to
evolve a mapping from a combination of their genomes and a po-
tential mate’s genomes to a scalar preference value that they could
then use to decide whether or not to select that mate. We showed
that this leads to a significantly higher population extinction time
when compared to randomly selecting mates. We additionally noted
that agents evolved to prefer mates with survival traits.

We believe that altogether this work represents a principled step
towards avoiding needing to use hand-coded mating strategies in
A-life domains.

Future work will allow agents to select how they present them-
selves to others; they will be able to design their own profiles rather
than other agents being able to observe their genome directly. These
profiles could be co-evolved alongside the preference networks.
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