Genetic Algorithms as Shrinkers in Property-Based Testing

Fang-Yi Lo
National Chiao Tung University
Hsinchu City, Taiwan
fylo@nclab.tw

ABSTRACT

This paper proposes the use of genetic algorithms as shrinkers
for shrinking the counterexamples generated by QuickChick, a
property-based testing framework for Coq. The present study in-
corporates the flexibility and versatility of evolutionary algorithms
into the realm of rigorous software development, in particular, mak-
ing the results of property-based testing observable and comprehen-
sible for human. The program code for merge sort is investigated
as a showcase in the study. Due to the lack of similar proposals
in the literature, random sample is used to compete with the pro-
posal for comparison. The experimental results indicate that the
proposed genetic algorithm outperforms random sample. Moreover,
the minimal counterexamples, through which programmers are able
to pinpoint the program mistakes with ease, can be successfully
obtained by using genetic algorithms as shrinkers.

CCS CONCEPTS

« Computing methodologies — Genetic algorithms; « Soft-
ware and its engineering — Software testing and debugging;

KEYWORDS

Genetic algorithms, Property-based testing, Shrinker, QuickChick,
Coq

ACM Reference Format:

Fang-Yi Lo, Chao-Hong Chen, and Ying-ping Chen. 2019. Genetic Algo-
rithms as Shrinkers in Property-Based Testing. In Genetic and Evolution-
ary Computation Conference Companion (GECCO °19 Companion), July
13-17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3319619.3322004

1 INTRODUCTION

Within the domain of software testing, techniques have been de-
vised to respond to the fast-growing complexity of computer soft-
ware. Among these techniques is property-based testing, nowadays
widely used for quickly finding program mistakes, i.e., so-called
bugs, in software development [1, 2, 7]. The idea of property-based
testing is to specify certain property of a computer program and use
random testing to discover counterexamples, if exist. Because the
counterexamples found by random testing is usually complicated,

Chao-Hong Chen
Indiana University
Bloomington, IN, USA
chen464@indiana.edu

Ying-ping Chen
National Chiao Tung University
Hsinchu City, Taiwan
ypchen@cs.nctu.edu.tw

barely comprehensible, shrinking is crucial and indispensable for
property-based testing.

In the present work, QuickChick [4], originated from QuickCheck
[3] for Haskell is adopted. QuickChick is a property-based testing
framework for Coq [5], a proof assistant widely utilized to prove
mathematical theorems [6] and to develop verified software [8]. In
this study, QuickChick is utilized as the testing framework, and
genetic algorithms are employed as general shrinkers, capable of
handling a broad range of data types and structures, for shrink-
ing counterexamples found by QuickChick. The program code for
merge sort will be investigate as a showcase in this article to demon-
strate that genetic algorithms are able to deliver satisfactory per-
formance. Hence, this study may be considered presenting a step
forward helping to build practical verified software.

2 SHOWCASE - MERGE SORT

Merge sort is a divide-and-conquer algorithm. The common practice
of implementation separates into two parts: (a) an unsorted list is
bisected into sublists recursively; (b) sublists are then merged by
comparing their elements in order.

Fixpoint merge 1112 :=
let fix merge_aux 12 :=
match 11, 12 with

| 1 -= 12
| o [0 =1
| a1: 11", a2:12' = ifal<?a2thenal: mergell 12
elseif a2 <? al then a2 :: merge_aux 12'
elseal :: mergell 12
end

in merge_aux 12.
The property to test in this showcase is specified as
Conjecture LengthPreserved : forall 1, length 1 = length (sort 1).

The length of a list should remain unchanged after sorting. Here, as
aforementioned, an implementation error is introduced on purpose.
By running the generator and checker in QuickChick, a counterex-
ample as a list which contains 748 integers can be found as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07...$15.00
https://doi.org/10.1145/3319619.3322004

201

It is obvious that although this counterexample proves the program
wrong, the software developer is unlikely able to extract useful
information by observation to correct the program code.

https://doi.org/10.1145/3319619.3322004
https://doi.org/10.1145/3319619.3322004

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

Algorithm 1 RANDOMDELETE for integer lists

procedure RANDOMDELETE(!, n)
d < rRANDOM(0, n)
fori=0tod-1do

r < RANDOM(0, length(l) — 1)
| « peLeTe(l,r)

1:
2
3
4:
5
6

return [

Algorithm 2 Genetic Algorithm Shrinker

: ce « {OriginalCounterexample}

. initdmax « Size(ce)/n

. penalty « Size(ce)

. psize « {MaximumPopulation}

: mdmax « {MaximumElementsToDeleteInMutation}
: cemrate «— {CounterexampleMutationRate}

: ncemrate «— {NonCounterexampleMutationRate}

. survive « {IndividualsGuaranteeToSurvive}

: generation < 0

o - S T N O

10: eval « 0

11: P[psize * 2] « INITIALIZATION(ce, initdmax)
12: while (eval < EvalMax) do {

13: for i = psize to psize * 2 - 1 do

14: PA < RANDOMSELECT(P[0], P[psize — 1])
15: PB « RANDOMSELECT(P[0], P[psize — 1])
16: P[i] « Crossover(PA, PB)

17. for i=0to psize* 2-1do

18: P[i] « MuTaTION(P[i], mdmax, cemrate, ncemrate)
19: P « SELECTSURVIVOR(P, survive)

20: generation « generation+ 1 }

3 SHRINKERS

Random sample and genetic algorithms are used as shrinkers. For
the showcase of merge sort, Algorithm 1 shows the interface for
both shrinkers to manipulate the data structure, integer lists.

3.1 Shrinker based on Random Sample
The shrinker based on random sample samples a random instance

which is smaller than the original, given counterexample, by using
the functionality of RANDOMDELETE. 500 random samples are tested.

3.2 Shrinker based on Genetic Algorithms

Algorithm 2 presents the pseudo code for the shrinker based on
genetic algorithms, in which CROSSOVER generates a child by copying
PA and deleting elements not in PB, and MUTATION deletes elements
by using RANDOMDELETE. EvalMax is also 500 as for random sample.

4 RESULTS

For the counterexample introduced in section 2, the minimum coun-
terexample, can be found by the proposed GA shrinker as

[64184077 ; 64184077].

By examining the counterexample, it is reasonable to speculate that
the mistake of the program for merge sort is due to the inability to
handle duplicate elements. Thus, the fix can be easily done as

292

Table 1: The mean and standard deviation of the minimal
sizes over 30 runs are listed for random sample (RS) and ge-
netic algorithm (GA) for merge sort.

Len.[RS GA [[Len.] RS GA
259 433+17 2+0.2]| 748| 1343+39.2 2+0
443 | 57.1+194 2+0 856 109+39.7 2+0
520 | 72.2+257 2+0 874 | 143.1+£45.6 2.2+0.9
629 | 1124+34 2+0 932 | 1195+386 2+0
705 | 1123 +39.1 2+0 985 | 1273 +£413 2+0

Fixpoint merge 1112 :=
let fix merge_aux 12 :=
match 11, 12 with
| I, = 12
| [0 =1
| al: 11, a2:12' = ifal<?a2thenal: mergell 12
else if a2 <? al then a2 :: merge_aux 12'
elseal :: a2 = mergell' 12'
end

in merge_aux 12.

Further assessing the capability of shrinkers, Tables 1 show the
average size and standard deviation of the minimal counterexamples
found by the two shrinkers over the 30 runs for merge sort on 10
different counterexamples. The results clearly indicates that the
proposed GA-based shrinker outperforms random sample.

ACKNOWLEDGMENTS

The work was supported in part by the Ministry of Science and
Technology of Taiwan under Grant MOST 107-2221-E-009-101.

REFERENCES

[1] Bernhard K. Aichernig and Richard Schumi. 2016. Property-Based Testing with
FsCheck by Deriving Properties from Business Rule Models. In 2016 IEEE Ninth
International Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 219-228. https://doi.org/10.1109/ICSTW.2016.24

Clara Benac Earle, Lars-Ake Fredlund, and John Hughes. 2016. Automatic Grading
of Programming Exercises Using Property-Based Testing. In Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’16). ACM, New York, NY, USA, 47-52.

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP "00). ACM, New York,
NY, USA, 268-279. https://doi.org/10.1145/351240.351266

Maxime Dénés, Catalin Hritcu, Leonidas Lampropoulos, Zoe Paraskevopoulou,
and Benjamin C Pierce. 2014. QuickChick: Property-based testing for Coq. In The
Coq Workshop.

The Coq development team. 2004. The Coq proof assistant reference manual. LogiCal
Project. http://coq.inria.fr Version 8.0.

Georges Gonthier. 2008. Formal proof-the four-color theorem. Notices of the AMS
55, 11 (2008), 1382-1393.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sj6berg,
and David Costanzo. 2016. CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI'16). USENIX Association,
Berkeley, CA, USA, 653-669. http://dl.acm.org/citation.cfm?id=3026877.3026928
Xavier Leroy. 2006. Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant. In 33rd ACM symposium on Principles of
Programming Languages. ACM Press, 42-54.

https://doi.org/10.1109/ICSTW.2016.24
https://doi.org/10.1145/351240.351266
http://coq.inria.fr
http://dl.acm.org/citation.cfm?id=3026877.3026928

	Abstract
	1 Introduction
	2 Showcase – Merge Sort
	3 Shrinkers
	3.1 Shrinker based on Random Sample
	3.2 Shrinker based on Genetic Algorithms

	4 Results
	Acknowledgments
	References

