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ABSTRACT 
We present a new algorithm for network clustering based upon 

genetic algorithm methods to optimize modularity. The algorithm 

proposes an innovative, more abstract representation, along with 

newly designed domain-specific genetic operators. We then 

analyze the performance of the algorithm using popular real-world 

data sets taken from multiple domains. The analysis demonstrates 

that our algorithm consistently finds high quality or even optimal 

solutions without any a priori knowledge of the network or the 

desired number of clusters. Furthermore, we compare our results 

with five previously published methods and yield the highest 

quality for the largest of the benchmark datasets. 
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1. Introduction 
Networks, which are commonly used to model data sets, use a node 

to represent each object and an edge to represent a pair-wise 

relationship between two nodes. While it is often straight forward 

to calculate all pair-wise relationships, higher-order relationships 

are typically needed to provide actionable knowledge. 

Unfortunately, direct computations of all higher-ordered 

combinations are difficult for all but the smallest of datasets. 
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Exact optimization of a clustering objective is not feasible for 

large data sets and approximation techniques are needed [3]. 

Accordingly, a wide range of heuristic algorithms (e.g. [1, 3]), 

including  genetic algorithm  (GA) approaches have been proposed 

to solve this problem, (e.g. [2, 5–7, 9]). A majority of the GAs 

presented in the literature use one of two objective functions: 

modularity [2, 7] and clustering coefficient [9]. 

The algorithm presented in this manuscript is based on 

modularity as presented by [8]. The definition follows: 
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Here 𝑙𝑖 is the number of intra-cluster edges in cluster i, 𝑑𝑠𝑖 is the 

sum of the degree of all nodes in cluster i, and m is the total number 

of edges in the original graph. 

2. Algorithm Details 
We propose a novel chromosome representation where each cluster 

is represented by an element in a primary linked list. A given cluster 

Ci then has its member nodes listed in a secondary list, which can 

be of different length for each cluster. This representation yields 

two primary benefits. First, intelligent problem-specific operators 

can be implemented efficiently and effectively. Second, when 

determining all of the nodes in a single cluster, only ni values, the 

number of nodes in cluster Ci, must be checked instead of all nodes, 

as in the stand representation. We will call this new algorithm the 

linked-lists and multi-operator approach (LLAMA). 

We utilize safe initialization  [4], which ensures that each initial 

chromosome is constructed of connected clusters. A connected 

cluster is one in which there is a path from any node to any other 

node in the cluster. Half of the population is created using a 

Random Walk algorithm similar to [5]. The other half of the 

chromosomes are created by repeatedly splitting apart the original 

network, until a randomly chosen number of clusters is reached. 

Listed below are the four mutation and two crossover operators. 

Both crossover operators require two chromosomes which will be 

identified as Chromosome 1 and Chromosome 2. Additionally, two 

nodes are neighbors if they share and edge in the original network. 

Before mutation or crossover occurs, tournament selection is used 

to identify the parent chromosomes and elitism guarantees the 

fittest individual is maintained. 

Split. The Split operator partitions the nodes from a single 

cluster into two clusters, where each cluster is connected. 
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Merge. The Merge operator is used to combine nodes from two 

clusters into a single cluster. Two clusters are merged only if the 

resulting cluster is connected. 

Redistribution. Two clusters are merged and then the resulting 

cluster is split. 

Point Mutation. The node is moved to the same cluster as one 

of its neighbors or to a new cluster, as a singleton. 

Node Crossover. In Chromosome 1, the node to crossover is 

moved to the same cluster as one of its neighbors, based on how the 

node is clustered in Chromosome 2. 

Cluster Crossover. A cluster is randomly chosen in 

Chromosome 2. Each of the nodes in this cluster are located in 

Chromosome 1 and combined into a new cluster in Chromosome 1. 

BFS Fix.  Since some of the operators can create unconnected 

clusters, a Breadth First Search (BFS) is performed after the other 

operators. If any unconnected clusters are identified, the 

unconnected parts are moved to create new clusters. 

3. Experimental Results 
Our algorithm was evaluated 50 independent times for each of the 

networks listed below. Each trial was run for 5000 generation, with 

a population size of 100 and a tournament size of 8. The highest 

modularity after each trial was recorded and used to calculate a 

maximum, average, and standard deviation for LLAMA, as listed 

in Table 1. The average modularity for each algorithm, as reported 

in the literature, and details on each network are also included.  

We examine the consistency of LLAMA using the standard 

deviation in modularity. The same solution was achieved on each 

trial for the Karate and Polbooks networks, while the largest range 

of solutions coincided with the largest network, Email. 

Details on each algorithm can be found at: TGA [11], GAOM  

[6], ECD [2], GACD  [10], and GALS [5]. In addition to the GALS 

results, [5] also provides a concise summary of the results from 

TGA and GACD. LLAMA demonstrated average modularity 

values that are similar to these leading methods and in fact 

outperformed all of the methods on the Email network. 

4. Conclusion and Future Work 
In this paper, we introduced a modularity-based network clustering 

approach using original GA methods that are designed specifically 

for this domain. A novel chromosome representation was 

introduced, which uses a primary linked-list to identify the clusters, 

and a secondary linked-list emanating from each cluster, that 

contains all the nodes within the cluster. Additionally, several GA 

operators are introduced that efficiently utilize this new 

chromosomal representation. 

We compare the performance of LLAMA against five 

previously published GA approaches. Our algorithm is able to 

repeatedly find optimal, or near optimal solutions, without any a 

priori information. LLAMA was comparable to the other methods, 

and in fact out performed all the other GA methods for the largest 

data set, Email. This suggests a potential for this approach to 

provide accurate clustering results for increasingly large datasets. 

LLAMA populations can easily be run in parallel, and given 

adequate computational resources, it holds promise to scale up to 

massive datasets of interest in scientific, business, and government 

applications. In the future, we would like to add other initializations 

using some fast heuristic methods, and perform detailed analysis of 

usefulness of various operators introduced here. 

Table 1: Results of LLAMA vs. Other GAs for Multiple Networks 

Network Nodes Edges Maximum Std. Dev. TGA GAOM EDC GACD GALS LLAMA 

Karate 34 78 0.4198 0.0000 0.4039 0.4183 0.38 0.4198 0.4198 0.4198 

Dolphins 62 159 0.5285 0.0008 0.5241 --- 0.46 --- --- 0.5281 

Polbooks 105 441 0.5272 0.0000 0.5245 0.5264 0.52 0.5272 0.5272 0.5272 

Football 115 613 0.6046 0.0001 0.5937 0.6046 0.56 0.6044 0.6046 0.6045 

Jazz 198 2742 0.4449 0.0003 0.4406 --- --- 0.4435 0.4449 0.4444 

Email 1133 5451 0.5756 0.0065 0.1871 --- --- 0.4422 0.5599 0.5632 
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