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ABSTRACT

Recent research showed that deep neural networks can be trained to
create shared languages to communicate and cooperate with each
other. These approaches used fixed, handcrafted network architec-
tures which were trained with reinforcement learning. We extend
this approach by using neuroevolution to automate network design
and find network weights of communicating agents. We show that
neuroevolution is a viable approach for training agents to develop
novel languages so as to communicate amongst themselves.
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1 INTRODUCTION

Emergent communication (EC) is an active research area of Arti-
ficial Intelligence with exciting results in facilitating cooperation
between artificial agents [2, 3, 5].

Recent work [2] showed that it is possible to train two agents
to develop a language from scratch so as to successfully play a
game requiring communication between agents. Additionally, EC
has been used to facilitate cooperation between agents in multi-
agent environments [3, 5]. The communicating agents in these
papers are fixed, hand-crafted neural networks which are trained
with reinforcement learning (RL) [2]. Recent work in evolutionary
computation, [6] though, has demonstrated that evolving the archi-
tecture of neural networks can improve their performance. As such,
current approaches could be limiting the success of communicating
agents by restricting their architecture to one chosen by human
developers.

We propose to evolve the architecture of deep neural networks
and train these networks to develop their own shared languages.
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To update these network’s weights we will be using evolutionary
search (ES) [8]. Our reasoning for using ES is twofold: ES allows
us (i) to quickly evaluate many agents which facilitates a wide ex-
ploration through architecture space, and (ii) to explore whether
techniques other than RL are viable for training deep neural net-
works to communicate.

2 PROBLEM FORMULATION

In this paper we address the problem of training agents to develop
their own languages so as to cooperate with each other. In line
with previous work [2], we formalize the problem as a repeated
referential game played by agents. In these games a speaker agent
Ag is shown some target object. A listener agent Ay is shown
the target and some distracting objects. The speaker then sends
messages to the listener which the listener uses to attempt to choose
the target object rather than a distracting object.

Our objective in this paper is to maximize the referential game
success rate of agent pairs when playing the referential game where
the objects being referred to are previously unseen. For a repeated
referential game over T rounds, we define the success rate of an
agent pair (As, Ar) as the proportion of rounds in which Ay cor-
rectly chooses the target object.

3 PROPOSED APPROACH

Speakers Ag and listeners Ay are both recurrent neural networks
(RNNs). While we periodically mutate the architecture of Ag and
Ar, an initial architecture for the first generation is needed. We
test two initial RNN architectures: a gated recurrent unit (GRU) [1],
and a small RNN with randomized architecture. We selected these
initial architectures to test, respectively, whether neuroevolution
could improve the performance of a well known RNN architecture,
and whether an RNN with no specific engineering could be evolved
to communicate effectively.

Agents Ag and Ay are each equipped with their own feedfor-
ward neural networks Fs and F, respectively. These feedforward
networks are used to preprocess target and distractor objects before
they are inputted to their respective RNN. The networks Fs and Ff,
both have a single hidden layer and use sigmoid activation.

In this paper we use evolutionary search [4, 8] to generate the
architecture of Ag and Ay as well as update the weights of Ag, Ar,
Fg, and F. For this evolutionary search, generations of speaker-
listener pairs (As, Ar) are evaluated on their performance at a
repeated referential game. Each generation, the best performing



pairs of that generation reproduce to create the next generation. For
a given agent pair (As, Ar ), reproduction consists of two parts: (i)
the weights of Ag, Ay, Fs, and F, are mutated with Gaussian noise,
(ii) the architecture of Ag and Ay is mutated. Possible architectural
mutations are (i) operator swapping (e.g., changing one of the RNN’s
addition gates to a multiplication gate), (ii) operator insertion (e.g.,
inserting a tanh gate or a multiplication gate), (iii) operator removal
(e.g., removing an addition gate and replacing it with one of its
arguments, or removing a sigmoid gate).

4 EMPIRICAL EVALUATION

We used the Visual Attributes for Concepts Dataset [7]. This dataset
contains 500 concepts (e.g., dog) in 16 categories (e.g., animals). For
each concept, there are human-generated annotations describing
its characteristics (e.g., has_fur).

We compared the random RNN and GRU initial architectures,
each with and without architectural mutation. This resulted in four
experimental conditions. We call the two conditions involving a
random RNN RT+E and RT, denoting respectively the condition
for which architectures are evolved and the condition for which
they are not. Similarly, we call the GRU conditions GRU+E and
GRU.

To evaluate our experimental conditions we created 13 random
partitions of the dataset into three disjoint subsets: a training set,
validation set, and test set. For each of the four experimental condi-
tions we executed one evolution run using each of the 13 random
partitionings for a total of 52 runs. For a given evolution run, every
generation, all agent pairs played the referential game with that
run’s training set to choose reproducing pairs. The best performing
pairs of each generation, in addition to reproducing, played the ref-
erential game again with that run’s validation set. Over a given run
we stored the agent pair which performed best on that run’s valida-
tion set and, after the run had finished, tested that best-performing
pair’s success at the referential game with that run’s test set. As 13
runs were performed for each condition, this resulted in 13 agent
pairs tested on the test set for each condition. The performance
measure by which we compared the four experimental conditions
was the mean test set performance of the 13 top-performing agent
pairs chosen from that condition’s evolution runs.

Table 1: Mean and maximum success rates over 13 trials in
the referential game when referring to objects drawn from
a test set for each experimental condition.

Experimental condition
RT+E | RT | GRU+E | GRU

Success rate

64.9%
71.0%

63.8%
68.9%

66.4%
70.9%

66.4%

Mean
71.1%

Maximum

Results

The first and second rows of Table 1 show, respectively, the mean
and maximum success rate of each condition’s 13 agent pairs which
were tested on their run’s test sets. Each of these agent pairs are the
pair that performed best on their run’s validation set. We used one
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distractor, so if agents guessed randomly then their expected suc-
cess rate would be 50% (the baseline). All experimental conditions
achieved accuracy significantly higher than the baseline (one-tailed
z-test, p = 1071° for all conditions). The highest mean success rate
was achieved by both GRU+E and GRU. The highest maximum
success rate was achieved by condition GRU. Both GRU condi-
titions significantly outperformed both random tree conditions
(two-tailed z-test, p < 5.9 X 107°). Condition RT+E significantly
outperformed condition RT (two-tailed z-test, p < 5.4 X 1073).

5 CONCLUSION

We showed that evolutionary search is a viable technique for emer-
gent communication. This can be seen since experimental condition
RT+E significantly outperformed condition RT, providing evidence
that evolutionary search for agent architectures can benefit commu-
nication. As all four experimental conditions performed well above
baseline, we also see that evolutionary search over the parame-
ters of two neural networks can be used to train those networks
to develop a shared emergent language. The performance of our
agents was significantly worse than that achieved with deep rein-
forcement learning [2], with our agents achieving a success rate
of only 71.1% on the referential game, while prior work achieved
success rates over 90% on more difficult versions of the same game.
The work in this paper was preliminary, though, and motivates
continued exploration of the value of evolutionary computation for
emergent communication. In particular, we believe that this work
would benefit most from more advanced neuroevolution techniques
(e.g., speciation) as well as formal analysis of evolved speaker and
listener architectures.
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