
Security Testing of Web Applications: A Search-Based Approach
for Detecting SQL Injection Vulnerabilities

Muyang Liu

University of Electronic Science and

Technology of China

Chengdu, China

muyangliu@std.uestc.edu.cn

Ke Li

University of Exeter

Exeter, UK

k.li@exeter.ac.uk

Tao Chen

Nottingham Trent University

Nottingham, UK

tao.chen@ntu.ac.uk

ABSTRACT
Web applications have become increasingly essential in many do-

mains that operate on confidential data related to business. SQL

injection attack is one of the most significant web application se-

curity risks. Detecting SQL injection vulnerabilities is essential for

protecting the underlying web application. However, manually enu-

merating test cases is extremely challenging, if not impossible, given

the potentially infinite number of user inputs and the likely nonex-

istence of one-to-one mapping between user inputs and malicious

SQL statements. This paper proposes an automatic security test case

generation approach to detect SQL injection vulnerabilities for web

applications, following a search-based software engineering (SBSE)

paradigm. Particularly, we propose a novel fitness function that

evaluates the similarity between the SQL statements produced by

feeding user inputs in the system under test and a known malicious

SQL statement. For the search algorithm, we exploit differential

evolution, which is robust in continuous optimization but it is under-

investigated in SBSE. Based on three real-world web applications,

we conduct experiments on 19 configurations that are of diverse

forms of SQL statements and types of attacks. Results demonstrate

that our approach is more effective, with statistical significance and

high effect sizes, than the state-of-the-art.

CCS CONCEPTS
• Software and its engineering→ Software reliability; Search-
based software engineering;

KEYWORDS
Security, SQL injection, test case generation, search-based software

engineering, differential evolution

ACM Reference Format:
Muyang Liu, Ke Li, and Tao Chen. 2019. Security Testing of Web Applica-

tions: A Search-Based Approach for Detecting SQL Injection Vulnerabilities.

In Genetic and Evolutionary Computation Conference Companion (GECCO
’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM, New York,

NY, USA, 2 pages. https://doi.org/10.1145/3319619.3322026

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00

https://doi.org/10.1145/3319619.3322026

1 INTRODUCTION
Web applications have become increasingly ubiquitous and impor-

tant in various domains [3]. They often host a large amount of

confidential data. Unfortunately, they are vulnerable to a variety

of security threats. In particular, SQL injection attack (SQLIA) is

recognized as one of the most significant web application security

risks according to Open web Application Security Project
1
. Typi-

cally, the SQL injection is to cheat the server to execute malicious

SQL commands by inserting SQL commands into user inputs.

Since SQLIAs are derived from user inputs, one simple but widely

used defending technique is input validation that escape user in-

puts through security coding [5]. Note that input validation largely

depend on the underlying functionality logic of the underlying web

application. There are not exist thumb rules to design universally

effective input validation. Furthermore, since user inputs can, in

principle, be infinite, it is difficult (if not impossible) to enumerate

a comprehensive set of test cases (i.e., user inputs) to fully test the

vulnerabilities of the underlying web application. Search-based soft-

ware engineering (SBSE) [4], which has shown strong performance

on automated software test case generation [2], is a promising

baseline for automating the security test in web applications. For

example, in [6], search-based approaches are proposed to exploit

XML injection vulnerabilities in an automatic manner. Inspired by

this work, we propose a search-based approach to automatically

generate security test cases for detecting SQL injection vulnera-

bilities. To facilitate our experiments, malicious SQL statements

for the underlying web application are known a priori by using

the SQL injection application benchmark developed by Halfond et

al. [3]. However, generating the user inputs that perfectly match the

malicious SQL statement is very challenging, because a malicious

SQL statement can be derived from various user inputs and the

input validation implies that there is often no one-to-one mapping

between the user inputs and the SQL statements produced by the

web application.

In this paper, we propose a new fitness function, called similarity

matching distance (SMD), to evaluate the closeness between the

SQL statement produced by executing the user input across the

underlying web application and a known malicious SQL statement.

In particular, we treat this closeness evaluation as a spelling er-

ror check problem that covers insert, deletion, replacement and

transpose of adjacent characters with respect to input strings.In ad-

dition, we exploit the power of differential evolution (DE) to serve

as the search algorithm for detecting SQL injection vulnerabilities.

1
https://www.owasp.org/

417

https://doi.org/10.1145/3319619.3322026
https://doi.org/10.1145/3319619.3322026
https://www.owasp.org/index.php/Top_10-2017_Top_10

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic M. Liu et al.

Note that DE has been recognized as one of the most successful

algorithms for continuous problems whereas it is unfortunately

under-exploited in the SBSE community.

2 A SEARCH-BASED APPROACH
Our approach generate a comprehensive set of test cases, which

mimic potential user inputs, to validate the vulnerabilities of the

system under test (SUT) including both the front- and back-end.

Figure 1: Work flow of our proposed security test case gen-
eration approach.

Figure 1 provides the work flow of our proposed search-based

security test case generation approach. Specifically, we apply DE,

a robust search algorithm to automatically generate user inputs

that can lead to SQLIAs. During the search process, the SUT is fed

with various user inputs, denoted as T, generated by our proposed

search algorithm. After the execution of the SUT, the generated
SQL statement, denoted as SUT(T), is compared with the known

malicious SQL statement, denoted as TO.
In our security test case generation scenario, the ultimate goal

is to find a solution T that leads to a SQL statement matching the

TO after being executed across SUT. Therefore, the fitness function
measures the distance between TO and SUT(T). Inspired by the

real-coded edit distance (RD) developed in [6], we develop a new

distancemeasure called similarity matching distance (SMD) to serve

our purpose.

Instead of editing operations, measuring the distance between

SUT(T) and TO can also be treated as checking the spelling errors

caused by SUT(T). As discussed in [1], insert, deletion, replace-

ment and transpose of adjacent characters cover 80% of the causes

of spelling errors. Therefore, we add the transformation operations

that RD(Real) [6] does not take into account. Specifically, given two

strings Sl and Ŝl ′ , their SMD, denoted as dSMD(Sl , Ŝl ′), is calculated
as:

dSMD(Sl , Ŝl ′) = (1 − L × p) × d(Sl , Ŝl ′) (1)

d(Sl , Ŝl ′) = min

d(Sl−1, Ŝl ′) + 1,

d(Sl , Ŝl ′−1) + 1,

d(Sl−2, Ŝl ′−2) +
|sl−ŝl ′ |

1+ |sl−ŝl ′ |
, i f sl−1 = ŝl ′ & sl = ŝl ′−1

d(Sl−1, Ŝl ′−1) +
|sl−ŝl ′ |

1+ |sl−ŝl ′ |
(2)

（a） （b）

Figure 2: Convergence rate of a TO for (a) DE with SMD and
RD; (b) DE, RGA, SGA, RS with SMD.

where p ∈ [0, 1] is a parameter and L is the number of same charac-

ters Sl and Ŝl ′ have from the beginning position.

3 EXPERIMENT AND ANALYSIS
Based on three real-world web applications, we conduct experi-

ments on 158 TOs in configurations that are of diverse forms of

SQL statements and types of attacks. As shown in Figure 2, we

randomly choose a TO and plot the trajectories across the number

of generations. we can see that the algorithm converges faster by

using the SMD in Figure 2(a) . This can explained as the RD does

not change for a long time when it is close to 0. In contrast, the

SMD can differentiate those strings which are very similar to each

other. Thus, it is more effective to accelerate the convergence. Fig-

ure 2(b) is clear that DE is consistently better than the other peer

algorithms across the search process. In particular, the trajectory

of DE is the steepest compared to the others. This indicates that

the convergence speed of DE is the fastest, where it only cost ap-

proximates around a quarter of the given computational budgets to

the optimum.

4 CONCLUSION
In this paper, we propose a search-based security test case genera-

tion approach to automatically detect SQL injection vulnerabilities

in web applications. In particular, we propose a novel fitness func-

tion, namely SMD. Unlike existing work, we exploit the power of

DE to serve as the search engine. In the future work, we will expand

the approach to take the semantic aspects of the SQL statements

into account.

REFERENCES
[1] Fred Damerau. 1964. A technique for computer detection and correction of spelling

errors. Commun. ACM 7, 3 (1964), 171–176.

[2] Saswat Anand et al. 2013. An orchestrated survey of methodologies for automated

software test case generation. Journal of Systems and Software 86, 8 (2013), 1978–
2001.

[3] Halfond, William, Orso, Alex, Manolios, and Pete. 2008. WASP: Protecting web

applications using positive tainting and syntax-aware evaluation. IEEE Trans.
Software Engineering 34, 1 (2008), 65–81.

[4] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based

software engineering: Trends, techniques and applications. Comput. Surveys 45, 1
(2012), 11.

[5] Michael Howard and David LeBlanc. 2003. Writing secure code. Pearson Education.
[6] Sadeeq Jan, Annibale Panichella, Andrea Arcuri, and Lionel Briand. 2017. Au-

tomatic Generation of Tests to Exploit XML Injection Vulnerabilities in Web

Applications. IEEE Trans. Software Engineering (2017).

418

	Abstract
	1 Introduction
	2 A Search-based Approach
	3 Experiment and Analysis
	4 Conclusion
	References

