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ABSTRACT
We investigate in this paper the suitability of multi-objective algo-
rithms for Symbolic Regression (SR), where desired properties of
parsimony and diversity are explicitly stated as optimization goals.
We evaluate different secondary objectives such as length, complex-
ity and diversity on a selection of symbolic regression benchmark
problems. Our experiments comparing two multi-objective evolu-
tionary algorithms against standard GP show that multi-objective
configurations combining diversity and parsimony objectives pro-
vide the best balance of numerical accuracy and model parsimony,
allowing practitioners to select suitable models from a diverse set
of solutions on the Pareto front.

CCS CONCEPTS
•Computingmethodologies→ Searchmethodologies; •The-
ory of computation → Random search heuristics; Theory of ran-
domized search heuristics; • Applied computing → Computer-
aided design;
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1 INTRODUCTION
Symbolic regression (SR) is a grey-box modeling technique where
an appropriate mathematical structure of the regression model is
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found by exploring the space of all possible expressions, usually
by employing genetic programming to evolve an initially-random
population of expression tree solution candidates.

Since the model structure is derived from data, SR typically tends
to produce large, complex models that are hard to interpret and
prone to overfitting. Model simplicity and interpretability are main
requirements in industrial applications of symbolic regression, thus
justifying approaches where these goals are explicitly stated as
optimization objectives. In this context, we explore the possibility
of using combinations of secondary objectives (eg., parsimony and
diversity) to improve desired model characteristics.

2 METHODOLOGY
We employ the NSGA-II [2] and MOEA/D [7] algorithms together
with a set of parsimony and diversity objectives. The algorithms
differ from one another in the basic concept they employ for the
search of Pareto optimal solutions.

The two algorithms are implemented in HeuristicLab [5] and
utilize the same objective functions and genetic operators, differing
only in their specific search logic.

The Multi-objective Evolutionary Algorithm based on Decom-
position (MOEA/D) by Zhang and Li [7] decomposes a MOP into
N scalar optimization subproblems, formulated via a scalarization
approach using uniformly distributed weight vectors. Different
decomposition methods are possible; we employ the Chebyshev
approach with objective scaling as suggested in [7].

The Non-dominated Sorting Genetic Algorithm (NSGA-II) [2]
uses the crowding distance between ranked non-dominated solu-
tions to guide selection towards a uniformly spread Pareto front. It
employs elitism by filling a new population each generation with
the best solutions from both parent individuals and generated off-
spring. We adopt the NSGA-II algorithm with the adaptations for
symbolic regression proposed by Kommenda et al. [3].

Secondary objectives such as length and complexity are intended
to complement the usual fitness measure and help the algorithm
to (i) evolve solutions faster by not having to process overly-large
trees, and (ii) increase solution parsimony, leading to better inter-
pretability and lower risk of overfitting.

We additionally use the standard GP algorithm as a baseline for
comparison. All algorithms are configured with a population size
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of 1000 individuals, 500 generations, 100% crosssover rate and 25%
mutation rate. Tree individuals are limited to maximum depth 100
and maximum length 50.

We use a collection of three parsimony measures (tree length,
visitation length and complexity) and combine themwith a distance-
based diversity measure.

• Tree length, to bias the search towards smaller models.
• Visitation length [4] was introduced by Smits and Kotanchek
as a way to simultaneously favor smaller, flatter and more
balanced structures

• Recursive complexity [3] by Kommenda et al. aims to pro-
duce simpler expressions by penalizing nesting of symbols
inside the tree structure, as well as non-linear symbols

• Tree diversity [1] by Burlacu et al. employs tree hashing to
identify isomorphic subtrees and defines a distance based on
the degree of overlap between two trees. It promotes average
distance within the population as a secondary objective.

We employ the listed objectives both individually and in pairs,
using the Pearson’s R2 correlation coefficient as a main objective.
We then use the hypervolume indicator H [8] to characterize multi-
objective performance. Since the tested algorithmic configurations
use different numbers of objectives, the resulting pareto fronts are
mapped to the same two-dimensional objective spaces defined by
(quality, length) and (quality, complexity). The goal is to identify
Pareto fronts containing small, simple and numerically accurate
solutions. A final valueH = HL+HC

2 is aggregated from the (quality,
length) and (quality, complexity) hypervolumes.

3 RESULTS
We perform empirical testing on a set of benchmark and real-world
problems: Breiman-1, Friedman 1 & 2, Poly-10, Chemical and Hous-
ing data [6]. Detailed results are available online1.

From a performance standpoint, the MOEA/D and NSGA-II algo-
rithms are virtually indistinguishable on the tested problems, thus
only NSGA-II is used for further discussion. The standard GP algo-
rithm ranks behind most multi-objective configurations in terms
of training performance and places last in the ranking based on
generalization capability on test data.

Table 1 shows that diversity and parsimony are an effective
combination that consistently produces high-quality results. At
the same time the best-performing configurations produce more
diverse Pareto fronts as reflected in their hypervolume rank.

4 CONCLUSIONS
We have shown that explicitly optimizing for desired model char-
acteristics using multiple secondary objectives represents a viable
approach. The combination of diversity and parsimony objectives
seems particularly suited for producing high quality solutions and
diverse Pareto fronts from which practitioners can select models
that best suit their requirements.
1https://dev.heuristiclab.com/trac.fcgi/wiki/AdditionalMaterial#GECCO2019

Table 1: Median R2 quality and hypervolumeH rank over all
problems, on training and test (inside parentheses) data.

Algorithm Secondary objectives R2 rank H rank

NSGA-II visitation length, diversity 4 (5) 3.5 (2.5)
NSGA-II length, diversity 4 (5) 7.5 (4.0)
NSGA-II complexity, diversity 8 (6) 3.5 (4.0)
NSGA-II complexity, visitation length 12 (8) 6.5 (6.5)
NSGA-II diversity 5 (10) 18.0 (18.0)
NSGA-II complexity, length 13 (10) 6.5 (8.5)
NSGA-II complexity 17 (10) 11.5 (12.0)
NSGA-II visitation length 14 (13) 10.0 (11.5)
NSGA-II length 15 (14) 13.0 (13.0)
Standard GA N/A 15 (18) N/A

ACKNOWLEDGMENTS
The authors gratefully acknowledge support by the Christian
Doppler Research Association and the Federal Ministry of Digital
and Economic Affairs within the Josef Ressel Centre for Symbolic
Regression

REFERENCES
[1] Bogdan Burlacu, Michael Affenzeller, Gabriel Kronberger, and Michael Kommenda.

2019. Online Dversity Control in Symbolic Regression via a Fast Hash-based Tree
Similarity Measure. Accepted for publication in 2019 IEEE Congree on Evolutionary
Computation abs/1902.00882 (2019). arXiv:1902.00882 http://arxiv.org/abs/1902.
00882 Preprint.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6, 2 (April 2002), 182–197. https://doi.org/10.1109/4235.996017

[3] Michael Kommenda, Gabriel Kronberger, Michael Affenzeller, Stephan Winkler,
and Bogdan Burlacu. 2015. Evolving Simple Symbolic Regression Models by
Multi-objective Genetic Programming. In Genetic Programming Theory and Prac-
tice XIII (Genetic and Evolutionary Computation), Rick Riolo, William P. Worzel,
M. Kotanchek, and A. Kordon (Eds.). Springer, Ann Arbor, USA. https://doi.org/doi:
10.1007/978-3-319-34223-8

[4] Guido Smits and Mark Kotanchek. 2004. Pareto-Front Exploitation in Symbolic
Regression. In Genetic Programming Theory and Practice II, Una-May O’Reilly,
Tina Yu, Rick L. Riolo, and Bill Worzel (Eds.). Springer, Ann Arbor, Chapter 17,
283–299. https://doi.org/doi:10.1007/0-387-23254-0_17

[5] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer, S.
Vonolfen, M. Kofler, S. Winkler, V. Dorfer, and M. Affenzeller. 2012. Architecture
and Design of the HeuristicLab Optimization Environment. In First Australian
Conference on the Applications of Systems Engineering, ACASE (Topics in Intelligent
Engineering and Informatics), Robin Braun, Zenon Chaczko, and Franz Pichler
(Eds.), Vol. 6. Springer International Publishing, Sydney, Australia, 197–261. https:
//doi.org/doi:10.1007/978-3-319-01436-4_10 Selected and updated papers.

[6] David R. White, James McDermott, Mauro Castelli, Luca Manzoni, Brian W.
Goldman, Gabriel Kronberger, Wojciech Jaśkowski, Una-May O’Reilly, and Sean
Luke. 2013. Better GP Benchmarks: Community Survey Results and Propos-
als. Genetic Programming and Evolvable Machines 14 (2013), 3–29. Issue 1.
https://doi.org/10.1007/s10710-012-9177-2

[7] Q. Zhang and H. Li. 2007. MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition. IEEE Transactions on Evolutionary Computation 11, 6
(Dec 2007), 712–731. https://doi.org/10.1109/TEVC.2007.892759

[8] Eckart Zitzler and Lothar Thiele. 1998. Multiobjective optimization using evolu-
tionary algorithms — A comparative case study. In Parallel Problem Solving from
Nature — PPSN V, Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-
Paul Schwefel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 292–301.

339

https://dev.heuristiclab.com/trac.fcgi/wiki/AdditionalMaterial#GECCO2019
http://arxiv.org/abs/1902.00882
http://arxiv.org/abs/1902.00882
http://arxiv.org/abs/1902.00882
https://doi.org/10.1109/4235.996017
https://doi.org/doi:10.1007/978-3-319-34223-8
https://doi.org/doi:10.1007/978-3-319-34223-8
https://doi.org/doi:10.1007/0-387-23254-0_17
https://doi.org/doi:10.1007/978-3-319-01436-4_10
https://doi.org/doi:10.1007/978-3-319-01436-4_10
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1109/TEVC.2007.892759

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusions
	Acknowledgments
	References

