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ABSTRACT
The benefits of optimising fleets of vehicles regards scheduling
tasks are threefold; reduced costs, reduced road use, and most im-
portantly, reduced emissions. However, optimisationmethods, both
exact and meta-heuristic, scale poorly. This issue is addressed with
Partial-ACO, a novel variant of ACO that scales by ants only par-
tially modifying good solutions. For real-world fleet optimisation
problems supplied by a Birmingham company of up to 298 jobs
and 32 vehicles, Partial-ACO demonstrates better scalability than
ACO and GAs reducing the company’s fleet traversal by over 40%.
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1 INTRODUCTION
Fleet optimisation is a common problem faced by organisations
from delivery companies, maintenance firms and medical profes-
sionals performing care in the community. They have many tasks
over a geographical area and a set of vehicles to carry them out
with. The problem is to assign tasks to vehicles and their order-
ing to minimise the traversal time of the vehicle fleet. The primary
gain is reduced fuel and labour costs but an important added ben-
efit is a reduction in emission levels. The World Health Organi-
sation (WHO) reports levels of particulates such as nitrogen ox-
ides (NOx) in major cities are increasing1 causing breathing prob-
lems and linked to increased cardiovascular disease. Many cities
must maintain low levels of particulates using clean air policies
like Birmingham City Council2, and fleet optimisation can assist
in this goal. However, optimising fleets of vehicles is NP-hard and
1Air pollution levels rising in many of the worlds poorest cities.
http://www.who.int/mediacentre/news/releases/2016/air-pollution-rising/en
2A Clean Air Zone for Birmingham https://www.birmingham.gov.uk/caz
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heuristic techniques fail to scale well with problem size. This pa-
per profiles a recent advance in Ant Colony Optimisation (ACO)
[4] known as Partial-ACO [1] and demonstrates its ability to scale
better when applied to real-world fleet optimisation problems.

2 PARTIAL-ACO FOR FLEET OPTIMISATION
ACO simulates ants traversing a fully connected graph G proba-
bilistically visiting vertices once depositing pheromone on edges E
defined by the solution quality. Ants probabilistically decide which
vertex to visit using pheromone levels on the edges of graphG plus
heuristic information. An evaporation effect limits pheromone lev-
els. However, ACO has scalability issues, first the requirement for
a pheromone matrix, a 100,000 vertex problem requires 37GB of
memory. Second, the probabilistic nature of ants deciding vertices
to visit using pheromone on the edges E. Eventually, an ant will
probabilistically make a poor decision even with high pheromone
levels on the optimal edge. It can be hypothesized that ACO by its
probabilistic nature becomes less likely to reach optimality as prob-
lem sizes increase with quadratically rising computational costs.
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Figure 1: An illustration of the Partial-ACO methodology.

Table 1: Birmingham maintenance company scenarios.
Problem Number of Number of Job Servicing Fleet Traversal

Vehicles Jobs Time (hh:mm) Time (hh:mm)

Week_A 8 77 47:09 31:12
Week_B 8 79 48:24 22:49
2Week_A 16 156 95:33 54:01
2Week_B 16 138 102:01 57:07
3Week_A 24 219 150:34 77:01
3Week_B 24 221 151:49 68:38
Month_A 32 298 198:58 99:50

To address this scalability, the derivative Partial-ACO has been
proposed enablingACO to be applied to TSP instances up to 200,000
cities [1]. Partial-ACO operates similarly to ACO but without a
pheromone matrix, addressing the first scalability issue. Instead,
pheromone is calculated from a population of ants and their respec-
tive solutions. Partial-ACO maintains a population of ants each
with a local memory (lbest ) of the best solution it has found operat-
ing in a steady statemanner. Pheromone deposit of antk on an edge
E of graph G is related to the quality of solution lkbest compared
to the global best solution, дbest ensuring consistent pheromone
level deposits as improved solutions are found negating any scala-
bility issues. An ant reconstructs edge pheromone levels by iterat-
ing through all lbest solutions of the ant population finding edges
taken from and arriving at the current location. The second com-
ponent of Partial-ACO addresses the probability of poor decisions

97



GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Darren M. Chitty, Elizabeth Wanner, Rakhi Parmar, Peter R. Lewis

Table 2: The results from each meta-heuristic approach regards optimising the schedules of the real-world scenarios.

Problem
Genetic Algorithm Max Min Ant System Partial-ACO Partial-ACOPH

Job Time Traversal Time Job Time Traversal Time Job Time Traversal Time Job Time Traversal Time
Serviced (%) Reduction (%) Serviced (%) Reduction (%) Serviced (%) Reduction (%) Serviced (%) Reduction (%)

Week_A 100.00 ± 0.00 28.10 ± 7.15 100.00 ± 0.00 33.62 ± 3.39 100.00 ± 0.00 32.29 ± 3.77 100.00 ± 0.00 37.14 ± 2.15
Week_B 100.00 ± 0.00 28.06 ± 10.60 100.00 ± 0.00 30.70 ± 4.85 100.00 ± 0.00 22.39 ± 7.84 100.00 ± 0.00 38.20 ± 2.88
2Week_A 100.00 ± 0.00 25.38 ± 5.93 100.00 ± 0.00 23.84 ± 7.46 99.98 ± 0.10 23.12 ± 6.30 100.00 ± 0.00 36.43 ± 1.37
2Week_B 100.00 ± 0.00 27.33 ± 4.32 100.00 ± 0.00 22.55 ± 5.01 99.98 ± 0.09 25.81 ± 4.72 100.00 ± 0.00 30.56 ± 1.91
3Week_A 100.00 ± 0.00 29.62 ± 4.21 99.95 ± 0.11 7.33 ± 6.56 99.91 ± 0.21 20.64 ± 2.36 100.00 ± 0.00 20.01 ± 2.71
3Week_B 100.00 ± 0.00 26.26 ± 4.13 99.86 ± 0.18 −2.36 ± 5.92 99.84 ± 0.27 18.00 ± 7.84 100.00 ± 0.00 13.74 ± 3.84
Month_A 100.00 ± 0.00 29.23 ± 4.18 99.76 ± 0.18 −17.85 ± 3.75 99.82 ± 0.18 19.60 ± 4.09 98.04 ± 0.49 −26.59 ± 8.48

during solution construction and computational costs. Each deci-
sion point has a given probability of a poor decision occurringwith
decision choices for a 100,000 vertex problem requiring five billion
pheromone comparisons. Consequently, Partial-ACO proposes an
ant when building a solution takes its lbest tour and retains part of
this tour and completes the rest in the same probabilisticmanner as
normal. A random point is first selected in the lbest tour and then
a random length of the tour to be retained with this section copied
into the new solution. The remaining part is then constructed as
normal (see Figure 1). This partially modified solution replaces an
ant’s lbest solution if an improvement. Reducing probabilistic deci-
sion reduces the probability of error and pheromone comparisons.

Fleet optimisation is in effect the Multi-Depot Vehicle Routing
Problem (MDVRP) [3], vehicles operate from depots with jobs to
completewith vehicle fleet traversal timeminimised. Solutions con-
sist of the vehicle set and their tasked jobs in the order they need
to be completed. To build solutions a vehicle is randomly selected
from which ants probabilistically select unfulfilled jobs or another
vehicle whereby the current vehicle returns to its depot. Solution
quality is measured using two objectives: maximise the number of
jobs performed within their time windows and minimise the total
traversal time of the vehicle fleet. See Chitty et al. [2] for further
details on Partial-ACO applied to this fleet optimisation problem.

3 RESULTS
To evaluate Partial-ACO for fleet optimisation, a real-world prob-
lem is used from a maintenance company based in Birmingham
with multiple vehicles and geographical customers. Vehicles have
depots to return to when finished. Customers are defined by a lo-
cation, job duration, and often, a time window. The working day is
defined as between 08:00 and 19:00 hours. Problems range in time
periods, jobs and vehicle availability with current company sched-
ules enabling real-world reductions to be ascertained (see Table 1).

Partial-ACO will be compared to Max Min Ant System (MMAS)
[6] and Genetic Algorithm (GA) [5] approaches. The GA uses cross-
over operators cyclic (CX), order (OX) and partially mapped (PMX)
with mutations swap, order reversal and insertion. The GA oper-
ates in a steady state, child solutions replace parents if their quality
is better. An alternative implementation of Partial-ACOwill also be
tested which does use a pheromone matrix termed Partial-ACOPH .
MMAS, GA and Partial-ACOPH use a population of 192 run for a
million iterations and Partial-ACO a population of 32 for sixmillion
iterations. Experiments averaged over 25 execution runs. Results
in Table 2 demonstrate both GA and MMAS approaches improve
upon the given company job scheduling for smaller problem in-
stances. However, ACO fails to scale as previously hypothesized
unlike the GA. Regards Partial-ACO, both variants improve upon

Table 3: Results from limiting maximummodification.

Max.
Mod. Problem

Partial-ACO Partial-ACOPH

Job Time Traversal Job Time Traversal
Serviced (%) Reduction (%) Serviced (%) Reduction (%)

Week_A 100.00 ± 0.00 41.17 ± 0.49 100.00 ± 0.00 41.94 ± 1.37
Week_B 100.00 ± 0.00 42.39 ± 1.11 100.00 ± 0.00 43.48 ± 0.44
2Week_A 100.00 ± 0.00 23.89 ± 6.54 100.00 ± 0.00 34.30 ± 2.39

50% 2Week_B 100.00 ± 0.00 24.41 ± 5.13 100.00 ± 0.00 34.08 ± 1.12
3Week_A 100.00 ± 0.00 27.12 ± 4.17 100.00 ± 0.00 25.94 ± 1.87
3Week_B 100.00 ± 0.00 22.52 ± 4.05 100.00 ± 0.00 22.29 ± 1.53
Month_A 100.00 ± 0.00 28.19 ± 5.90 98.67 ± 0.28 −5.98 ± 3.54

Week_A 100.00 ± 0.00 32.93 ± 13.07 100.00 ± 0.00 30.12 ± 2.39
Week_B 100.00 ± 0.00 33.91 ± 5.24 100.00 ± 0.00 30.84 ± 4.91
2Week_A 100.00 ± 0.00 28.08 ± 7.53 100.00 ± 0.00 31.38 ± 2.37

25% 2Week_B 100.00 ± 0.00 30.66 ± 6.14 100.00 ± 0.00 32.15 ± 2.67
3Week_A 100.00 ± 0.00 33.27 ± 6.85 100.00 ± 0.00 26.18 ± 2.89
3Week_B 100.00 ± 0.00 31.66 ± 6.74 100.00 ± 0.00 22.78 ± 2.42
Month_A 100.00 ± 0.00 32.91 ± 3.73 99.41 ± 0.32 5.35 ± 5.65

ACO reinforcing this hypothesis. Partial-ACOPH has the edge over
Partial-ACO for the smaller problems but is less capable of scaling.

Partial-ACO can be further enhanced by limiting the degree by
which an ant can modify its lbest solution as originally postulated
[1]. Doing so further reduces ants probabilistic decision making
minimising error potential and computational cost. Table 3 demon-
strates the effect for both Partial-ACO approaches with restrictions
of 50% and 25% with considerable improvements achieved. Indeed,
Partial-ACO now scales to larger problem instances much better al-
though Partial-ACOPH achieves slightly better solutions for smaller
problem instances. When restricting to 25% for larger problems,
improved reductions in fleet traversal are achieved of 30-33%, bet-
ter than a GA. However, for smaller problems results are poorer
as there is little capacity for change. Reductions up to 42% are
achieved over the original company schedules using Partial-ACO.
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