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ABSTRACT

In this paper, we undertake an investigation on the effect of bal-
anced and unbalanced crossover operators against the problem of
finding non-linear balanced Boolean functions: we consider three
different balanced crossover operators and compare their perfor-
mances with classic one-point crossover. The statistical comparison
shows that the use of balanced crossover operators gives GA a
definite advantage over one-point crossover.
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1 INTRODUCTION

Crossover operators play a crucial role in Genetic Algorithms (GA).
In the case of binary strings, there exist several classes of com-
binatorial optimization problems whose feasible solutions must
contain a specified number of ones, which are difficult to handle
for classical crossover operators. A way to address this problem
is to design recombination operators that preserve the Hamming
weight of the bitstrings: the balanced crossover operators. In the lit-
erature, the motivation supporting the use of such operators is the
reduction of the search space [5]. However, it is not clear whether
balanced crossover operators actually bring any advantage to GA
working with fixed Hamming weight bitstrings. Some works in
the literature [8, 9] performed a comparison with non-parametric
test on classic crossover operators, but did not consider balanced
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operators. The aim of this paper is to begin closing this gap: we
consider three balanced crossover operators in our investigation
for finding non-linear balanced Boolean functions.

2 BALANCED CROSSOVER OPERATORS

Previous work on the design of balanced crossover operators in-
cludes [1, 6, 7]. In the following, F; is {0, 1}, a bitstring of length
n € N is a binary vector x of n components, and we say that x is
balanced when it is composed of an equal number of zeros and
ones. We now describe the crossover operators adopted in our ex-
periments. Each of these operators is based on a different encoding
for the chromosome of a balanced solution.

Counter-Based Crossover. This crossover uses the binary vec-
tor coding. With it, the simplest way to design a balanced operator is
to randomly select bit-by-bit the allele from the first or the second
parent to be copied in the offspring (as in uniform crossover), and
use counters to keep track of the multiplicities of ones and zero
in the child. When one of the two counters reaches the prescribed
threshold, the child is filled the complementary value. Millan et
al. [7] were the first who proposed this operator to evolve nonlin-
ear balanced Boolean functions. Later works [3-5] adapted this
operator to similar optimization problems.

Map of Ones Crossover. The map of ones of x is the vector
q =(q1, - ,qx) where for all i € {1,---,k} it results that ¢; has
value one. One can notice that the only constraint in the map of ones
is that there cannot be duplicate positions in the vector. Thus, given
two bitstrings represented by their maps of ones, our crossover
operator is aware of the common positions between them, in order
to avoid duplications.

Zero Lengths Crossover. Given the bitstring x, the zero lengths
coding of x is the vector r = (r1,- - ,r,_r4+1) which lists the dis-
tances between consecutive ones in x. The zero lengths vector of a
bitstring of length n and Hamming weight k is valid if and only if
the sum of the components in the vector equals k. Our crossover
operator based on the zero lengths representation thus controls the
sum of the run lengths of zeros in the offspring.

3 EXPERIMENTS

Nonlinear Balanced Boolean Functions. A Boolean function of
n € N variables is a map f : F} — [F,. The truth table is basically
a binary vector of length 2" that specifies for each input vector
x € F} the output value of f(x). A Boolean function is called
balanced if its truth table is composed of an equal number of ones
and zeros. The nonlinearity of NI a Boolean function f : F} — [,
is defined as the minimum Hamming distance of its truth table
from the set of truth tables of all linear functions. We refer the
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Figure 1: The results for the balanced Boolean functions problem for 6 (left), 7 (center), and 8 (right) variables.

reader to [7] about the optimization problem of finding highly
nonlinear Boolean functions, and its relevance to cryptography.
Given the truth table bitstring of a Boolean function f : F} — F;
of n variables, in our experiments the fitness of f is computed with
the following function: fit; (f) = NI(f) — UNB(f) where UNB(f)
is the unbalancedness penalty factor which punishes the deviation
of f from being a balanced function. The objective of our GA, in
particular, is to maximize fit (f).

Experimental Settings. We use a steady state GA, where a sin-
gle pair of parents is drawn from the current population at each
iteration. For selection, we employed a deterministic tournament
operator where the best two out of ¢ randomly sampled individuals
are selected for crossover. Our GA generates a single child for each
selected pair of parents. The mutation operator depends on the type
of crossover: when one-point crossover is used, a classic bit-flip
mutation operator is applied on the generated child. With balanced
crossover operators a simple swap-based mutation operator is used.
For one-point crossover, the population is initialized at random,
while for balanced crossover operators all the individuals in the
initial population are balanced. The GA uses a worse-replacement
elitist strategy: if the child has a better fitness value than any of its
two parents, then the worse individual in the population is replaced
by it. For each problem instance, we ran our GA with each of the
four crossover operators for R = 50 experimental runs. Hence, we
performed a total of 3 - 4 - 50 = 600 experiments. Each of them
used a population size of P = 50 individuals, tournament size t = 3
and mutation probability p,, = 0.2, and stopped after fit = 500000
fitness evaluations. To compare the results we employed the Mann-
Whitney-Wilcoxon test [2] with significance value a set to 0.01.

Results. The results of the experiments are summarized in Fig-
ure 1. For 6 variables, the map of ones crossover seems to produce
the best results, with all fitness values obtained being equal to 26 (re-
call that this is a maximization problem, so higher values are better).
This is evident also in the statistical tests, with a significant differ-
ence between the distribution of the “map of ones” results and all
the other methods, with p-values of 1.4 - 1075,0.0018, and 9.5 - 10~
when compared to the one point, counter-based, and zero-lengths
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crossover, respectively. Similar results hold for 7 variables, where
the map of ones and the counter-based operators perform better
than one-point crossover (p-values of 2.6 - 107% and 2.3 - 1078, re-
spectively). The map of ones crossover also performs better than the
zero-lengths crossover (p-value of 0.0002), but no other comparison
of the results gives a statistically significant difference. The results
are different in the case of 8 variables, with one-point crossover
resulting in a statistically significant difference with all other op-
erators (in all cases the p-values are less than 107'2). Therefore, it
appears as if the map of ones crossover is, on this problem, the best
performer, but its advantage when the problem size increases is not
preserved with respect to the others balanced crossovers. When
the problem size increases, the inability for one point crossover to
preserve balancedness is a serious drawback, making it the worst
performer for 8 variables.
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