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ABSTRACT
In continual learning, an agent is exposed to a changing environ-

ment, requiring it to adapt during execution time. While traditional

reinforcement learning (RL)methods have shown impressive results

in various domains, there has been less progress in addressing the

challenge of continual learning. Current RL approaches do not al-

low the agent to adapt during execution but only during a dedicated

training phase. Here we study the problem of continual learning in

a 2D bipedal walker domain, in which the legs of the walker grow

over its lifetime, requiring the agent to adapt. The introduced ap-

proach combines neuroevolution, to determine the starting weights

of a deep neural network, and a version of deep reinforcement

learning that is continually running during execution time. The

proof-of-concept results show that the combined approach gives a

better generalisation performance when compared to evolution or

reinforcement learning alone. The hybridization of reinforcement

learning and evolution opens up exciting new research directions

for continually learning agents that can benefit from suitable priors

determined by an evolutionary process.

KEYWORDS
Reinforcement learning, Continual learning, Meta-learning

ACM Reference Format:
Djordje Grbic and Sebastian Risi. 2019. Towards Continual Reinforcement

Learning through Evolutionary Meta-Learning. In Genetic and Evolutionary
Computation Conference Companion (GECCO ’19 Companion), July 13–17,
2019, Prague, Czech Republic. ACM, New York, NY, USA, 2 pages. https:

//doi.org/10.1145/3319619.3322044

1 INTRODUCTION & RELATEDWORK
The current way that AI methods learn is fundamentally different

than the ways humans learn; they only perform well in situations

they have been trained for in advance and are not able to learn new

knowledge during execution time. If situations or circumstances

change only slightly, current AI systems will likely fail to perform

well. These issues clearly limit the usage of these machines, which

have to be taken offline to be re-trained.

An approach that tries to address this challenge is meta-learning.

The idea of meta-learning or learning to learn has been around
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since the late 1980s and early 1990s but recently gathered wider

interest [4]. One of the earliest proponents of meta-learning was

Schmidhuber, who invited methods that allowed neural networks to

learn how to modify their own weights [6] but while very general,

these approaches proved difficult to train. A recent trend in meta-

learning is to find good initial weights (e.g. through gradient descent

[3] or evolution [2]), from which adaptation can be performed

in a few iterations. One such approach is Model-Agnostic Meta-

Learning (MAML) [3], which allows simulated robots to quickly

adapt to different goal directions.

The approach presented in this paper aims to combine the bene-

fits of artificial evolution with the sample efficiency of state-of-the-

art RL algorithms to create a continually learning agent. Through

a meta-learning setup, evolution is tasked with finding good initial

weights that allow a reinforcement learning algorithm to continu-

ally adapt the networks’ weights during the lifetime of the agent.
The approach shares similarities with the work by Fernando et

al. [2], in which the authors also evolve parameters for a network

that then learns further through evolution but the way it is applied

is different. Here we are interested in discovering parameters that

allow reinforcement learning to continually learn, while the goal in
Fernando et al.’s approach was to learn as fast as possible.

We test our approach on a new 2D bipedal walker domain

(Growing-Bipedal-Walker) that was modified to increase

the size of the walker’s legs while it is exploring the environment.

This domain requires the agent to continually adapt while avoiding

falling over or getting stuck.

2 CONTINUAL REINFORCEMENT LEARNING
THROUGH NEUROEVOLUTION

The approach in this paper is a combination of an evolutionary

algorithm, which searches for the initial network weights, and an

RL algorithm that adapts the model to a changing environment

during the lifetime of the agent. A lifetime of the agent is defined as

a single episode in the environment, during which the RL algorithm

has to transform the reward signal into weight corrections. The

corrections made by the RL algorithm disappear after the episode

ends. Details of the approach are shown in Algorithm 1. Note that,

in contrast to typical RL algorithm, RL is still updating the weights

of the agent’s neural network even during execution.

2.1 The Growing Bipedal Walker Domain
The approach in this paper is tested on a modified version of the

Bipedal-Walker-v2, a commonly used environment present

in the OpenAI Gym library [1]. The environment consists of a

single bipedal walker that has to traverse a randomly constructed,

mostly flat terrain. The walker needs to get to the rightmost end of

the world in a limited amount of time. In the introduced modified
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Figure 1: Growing bipedal walker. In the 2D bipedal walker

tasks in this paper the legs of the agent grow over its lifetime.

Shown are samples of leg lengths in the three growth phases.

version of the task, the legs of the walker are increased three times

during the lifetime of the agent (Figure 1).

The modified environment presented in this paper splits the

terrain into three equally sized parts (beginning, middle, and end).

At the start of each part the agent is reconstructed with a new

legs length, where the length is sampled from three uniform dis-

tributions: U (0.5, 0.7) for the beginning, U (0.9, 1.1) for the mid-

dle and U (1.3, 1.5) for the end part of the world. This schedule

is supposed to: (a) simulate the growth of the legs over time, (b)

challenge the agents to generalize by varying the body composi-

tion, and (c) to minimize the influence of “luck” by controlling the

minimum amount of change at predefined intervals (Figure 1). A

video of an agent successfully solving the task can be found here:

https://youtu.be/cO3h_YinngE.

2.2 Training setup
The agent model has two networks (actor and critic), each with

two hidden layers of 64 fully-connected neurons. Each model runs

100 episodes and the cumulative episode rewards are taken as the

fitness of the agent. Three different setups are compared to elucidate

the advantages of the evolutionary meta-learning approach:

RL: A2C algorithm with a separate network for the actor and

the critic (which is a synchronous version of A3C [5].), which is

run with 16 parallel environments and the algorithm performs the

gradient update after 200 steps in each environment. The training

parameters are chosen manually to get a good trade-off between

performance and training times. Training runs for 5,000 gradient

descent steps.

EA: Darwinian evolution determines the weights of the con-

troller neural network. The weights of the network stay unchanged

during the lifetime (evaluation episode) of the individual controller

and their fitness is the cumulative episode reward. The top 20 indi-

viduals are chosen as parents and are re-evaluated 10 times. The

individual with the best median fitness is copied unchanged to the

next generation.

EA + lifetime RL: The combined approach in which the RL

algorithm runs gradient descent every 20 steps. The fitness function

and selection scheme are the same as in the EA experiments.

3 RESULTS & DISCUSSION
All models are evaluated on 100 episodes during testing (Figure 2).

The results show that the model produced by the EA+RL method

produces higher scoring episodes more often. Furthermore, this

setup is the only one that produces episodes with a reward higher

than 100. The high variance is the obvious downside of the approach

and requires further investigation. The choice of the RL algorithm,

for instance, could have a significant impact on the robustness

of the approach. While an EA by itself is unable to learn a high-

Algorithm 1 Continual Learning Through Evolution

1: function Lifetime(evolved_weiдhts, env )
2: model = init (evolved_weiдhts); state = env .r eset ()
3: for not done do
4: for step = 1 to 20 do
5: state, done, r eward = env .step(model .act (state))
6: if env .phase_f inished then
7: env .дrow_leдs()
8: end if
9: obs_buf f er .add (state, r eward )
10: end for
11: A2C .дradient_descent (model, obs_buf f er )
12: obs_buf f er .r eset ()
13: end for
14: r eturn env .episode_r eward
15: end function

Figure 2: Testing reward over 100 trials.

performing policy, in combination with on-line RL it presents a

promising direction for further research into continual learning.
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