
Improving the algorithmic efficiency and performance of
channel-based evolutionary algorithms

Juan-Julián Merelo Guervós
Universidad de Granada/CITIC

Granada,Spain
jjmerelo@gmail.com

Juan Luis Jiménez Laredo
Ri2C-LITIS, Université Le Havre

Le Havre, France
juanlu.jimenez@univ-lehavre.fr

Pedro A. Castillo
Universidad de Granada/CITIC

Granada,Spain
pacv@ugr.es

Mario García Valdez
Tecnológico Nacional de México

Tijuana, México
mario@tectijuana.edu.mx

Sergio Rojas-Galeano
Universidad Distrital Francisco José de Caldas

Bogotá, Colombia
srojas@udistrital.edu.co

ABSTRACT
Concurrent evolutionary algorithms use threads that communicate
via messages. Parametrizing the work in every thread and the way
they communicate results is a major challenge in its design. In this
paper we work with concurrent evolutionary algorithms imple-
mented in Perl 6, and explore different options of single-thread
evolution parametrization, communication and mixing of results,
showing that scalability is achieved in a multi-core environment.

CCS CONCEPTS
• Theory of computation → Concurrent algorithms; • Com-
puting methodologies → Genetic algorithms;
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1 INTRODUCTION
Nowadays, concurrent programming is the best option to leverage
the number of processes and threads that a multi-core processor
architecture can host. These capabilities must be matched at an ab-
stract level by concurrent languages that incorporate programming
constructs intended to manage creation, execution and termination
of processes, as well as new models of communication between
such processes. Moreover, concurrent programming adds a layer
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of abstraction over the parallel facilities of processors and oper-
ating systems, offering a high-level interface that allows the user
to program modules of code to be executed in parallel threads [1].
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Figure 1: Concurrent EAs
timeline

Different languages offer dif-
ferent concurrency policies de-
pending on how they deal
with state, that is, data struc-
tures that could be accessed
from several processes. They
can be divided roughly be-
tween channel-based concur-
rency, with no shared nor
stored state, and actor based
concurrency, which stores state
(in actors) but does not share
it. This last model is the one
used by the Perl 6 language,
which is the one we are going
to be using in this work.

Previously we designed an
evolutionary algorithm based
on using a stateless architec-
ture [2, 3], with different pro-
cesses reacting to a channel
input without changing state,
andwriting to the channel, but
its design leaves many options
open, and they have to be ex-
plored heuristically. First, we
will find out what are the best
parameters from the point of
view of the algorithm; then,
we will test several communication strategies: a lossless one that
compresses the population, and a lossy one that sends a represen-
tation of population gene-wise statistics.

2 EXPERIMENTAL SETUP AND RESULTS
Building upon the design we used in previous experiments[3], here
our goal was to create a system that was not functionally equivalent
to a sequential evolutionary algorithms, and that followed the prin-
ciple of communicating sequential processes. As in the previous
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papers, [2], we will use two groups of threads, one for performing
the evolutionary algorithm and other for mixing populations, and
two channels, one for carrying non-evolved, or generated, popula-
tions, and another for pairs of evolved populations.

The proposed system is illustrated in Figure 1. The evolutionary
group of threads will read only from the evolutionary channel,
evolve for a number of generations, and place result in the mixer
channel; the mixer group of threads will read only from the mixer
channel, in pairs. From every pair, a random element is put back
into the mixer channel, and a new population is obtained and sent
back to the evolutionary channel. The aim of using two channels is
to avoid deadlocks; the fact that one population is always written
back to the mixer channel avoids starvation in that channel.

The baseline communication model was time-costly so in this pa-
per we introduce two different messaging strategies: EDA, in which
the message consist of a probability distribution of each gene in
the population, and compress, that simply bit-packs the population
without the fitness into a message, using 1 bit per individual.

Similarly to our previous experiments, first we will compare
these new strategies with respect to a baseline, evaluating the gap
between receiving a message and activating the thread until send-
ing the message to deactivate it. Besides, we heuristically studied
other messaging strategy called no writeback (nw), where the mixer
thread sends the individuals to the evolver channel, to undergo an
additional round of evolution.

The experiments used 64-bit OneMax, a classical benchmark, it
can be easily programmed in Perl 6, and allowed us to focus in the
design of the relevant mechanisms of the concurrent evolutionary
model; it was also used in the baseline experiments. We used the
open source Algorithm::Evolutionary::Simple Perl 6 module.

Two evolver threads are needed to avoid starvation of the mixer
thread. The generation gap was checked for the shown values,
although in some cases we extended it to 4 and 64 generations.
The population was sized as in previous papers using the bisection
method, and the number of initial populations created and sent to
the evolver channel was also designed to avoid starvation.
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Figure 2: Evaluations per second vs. generation gap. Higher
is better. Axes are logarithmic.

First, the generation gap and strategy that obtains the best num-
ber of evaluations and evaluations per second has been found, and

this is shown in Figure 2 In general, the number of evaluations
increases with the generation gap. More evolution without inter-
change with other populations implies more exploitation, and then
the possibility of stagnation. However, the highest number of eval-
uations per second are achieved by the EDA strategies, as shown in
the figure. This EDA-style communication strategy finds the best
balance between number of evaluations and communication speed
mainly due to the compactness of its messages, but also due to the
fact that it is non-elitist and might avoid stagnation or dominance
of the population by a super-individual.

However, the intention of concurrent evolutionary algorithms
is to leverage the power of all threads and processors in a com-
puter, so unlike in previous papers, we must find a version of the
algorithm that speeds up with the number of threads. After many
tests, eventually the scaling strategy was simply to divide the total
population by the number of threads. This resulted in a decrease
of wallclock time from 2 to 4 threads, and an additional increase
of evaluations/second up to 8 threads. However, since smaller pop-
ulation brings about decreased diversity, more evaluations were
needed and time actually increased from 4 threads up.

3 CONCLUSIONS
In this paper we explored the parameter space in a concurrent evo-
lutionary algorithm looking for the combination that yields the
best speedup performance, without affecting its algorithmic effec-
tiveness. In order to do so, the size of messages interchanged within
the channel has been redesigned using the distribution of proba-
bilities as a representation of the population. Different messaging
strategies has been also tested.

Experiments show that the number of generations that the pop-
ulation undergoes must be kept to a small number. The results also
indicate that the EDA strategy is the fastest, with a relatively low
impact in the number of evaluations, as the messages are the most
compact. Finally, obtained results have shown that simultaneous
threads running an evolutionary algorithm via population split-
ting do increase the number of simultaneous evaluations, leading
the new concurrent evolutionary algorithm to improve the perfor-
mance in comparison to the equivalent single thread evolutionary
algorithm. However, the total time does not decrease in the same
proportion due to the effect of the division of population.
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