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ABSTRACT
Robust optimisation, in recent years, has surfaced as an essential
technique to handle data uncertainty in mathematical programming
models. However, the resulting robust counterparts are often hard
to solve even for modern state-of-the-art Mixed Integer Program-
ming solvers, underlining the need for approximate algorithms.
Based on the works of Gonçalves and Resende [3], we propose
genetic algorithms for the network slice design problem (NSDP)
under uncertainty. We investigate the performance of the proposed
algorithms using realistic datasets from SNDlib [4].
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1 INTRODUCTION
Network slicing concerns optimal partitioning and allocation of
logical network resources among the network slice requests so as
to ensure independent control over the resources allocated to the
respective slices. We revisit the problem of designing a large-scale
logical network slice under traffic uncertainty [1] using the notion
of layered graphs [5]. We employ a fine-grained approach to model
the uncertainty in the traffic demands by adopting a generalisation
of the Bertsimas and Sim model, namely the "multi-band" uncer-
tainty set [2]. By capturing the distribution of the uncertain coeffi-
cients using a histogram-like model, the multi-band uncertainty set
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greatly improves the modelling power of the uncertain coefficients
thereby resulting in robust allocation of physical substrate net-
work resources with reduced conservativeness. Notwithstanding
the advantages, the resulting robust counterparts can prove very
challenging even for state-of-the-art Mixed Integer Programming
solvers. To this end, we propose a modified version of the biased
random-key genetic algorithm [3] to solve the robust network slice
design problems. We first present the optimisation model for the
robust network slice design problem followed by the description of
the algorithm and some experimental results to conclude the paper.

2 ROBUST NETWORK SLICE DESIGN
We now present the formulation of the robust network slice de-
sign problem that operates on the layered graph Gk

L = (V k
L ,A

k
L ).

Binary decision variables xka ,∀k ∈ K ,a ∈ AkL determine whether
the demand k is routed through arc a. Integer variables yvf ,∀f ∈
F ,v ∈ V ( f ) specify the number of virtual modules assigned to the
network functions. Integer variables yv ,∀v ∈ V and ye ,∀e ∈ E
indicate the number of capacity modules installed on the nodes and
edges, respectively.
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xka ∈ {0, 1},yvf ,yv ,ye ∈ Z≥0 (1f)

Objective function (1a) minimises the cumulative costs of substrate
resource utilisation and potential capacity installations required to
host a network slice. Constraints (1b) represent the flow conserva-
tion at each vertex, where bk = 1 if v = sk , bk = −1 if v = tk , else
0. Constraints (1c), (1d), and (1e) denote the capacity requirements
at the network functions, nodes and edges, respectively.
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3 BIASED RANDOM-KEY GENETIC
ALGORITHMS

Built on the principle of natural selection, biased random-key ge-
netic algorithms aim to find near-optimal solutions to a wide array
of combinatorial optimisation problems [3]. As an alternative to
solving the robust network slice design problem using commercial
Mixed Integer Programming solvers, we propose a modified version
of the biased random-key genetic algorithm.

An initial population comprising a set of random-key vectors
P is constructed. A vector p encodes a candidate solution for the
robust NSDP using a sequence of random keys ⟨pk | k ∈ K⟩, where
a key pk is drawn uniformly at random from the set Rk , where
ϕ : Pk

∼
−→ Rk . At every generation, we evaluate the fitness of the

vectors by applying a problem-specific decoder. The vectors are
sorted in the ascending order of their fitness values, and the pop-
ulation is then bifurcated into a set of elite Pe and non-elite Pē
individuals. As a part of evolution, the elite partition is copied onto
the new population of the next generation unchanged. Furthermore,
a set of mutantsPm are added to the population, where eachmutant
is again a random-key vector representing a candidate solution. The
population is completed by adding |P | − |Pe | − |Pm | individuals,
where each individual is generated by applying a crossover function.
Two individuals, pM and pN are picked randomly from the popula-
tion in the current generation and are combined using parametrised
uniform crossover to produce an offspring, with ϱ > 0.5 being the
probability with which an offspring inherits the key of the indi-
vidual pM . The algorithm continues to evolve the population until
a restart criterion is not satisfied. Subsequently, a restart strategy
is applied which involves re-initialising the non-elite partition Pē
with a fresh set of random-key vectors after a fixed number of
(non-improving) generations in order to escape local optima.

Decoder for the robust NSDP. A feasible solution to the robust NSDP
is extracted from a random-key vector by applying the function
ϕ−1 to each of its random keys pk to get the corresponding encoded
paths. Following this, the arcs comprising the encoded paths are
activated to obtain the fixing of the variables xka . The number of ca-
pacity modules required to support the network slice are computed
by identifying the total volume of traffic in the network slice for
the worst-case realisation of the uncertain traffic demands, thereby
obtaining a feasible solution to the robust NSDP. Finally, the fitness
i.e., the value of the extracted solution is computed using equation
(1a).

4 EXPERIMENTAL RESULTS
We validate the performance of the proposed solution methodolo-
gies using realistic problem instances from the SNDlib [4]. The
biased random-key genetic algorithm is configured as follows: We
set the size of the population to 50 individuals, the percentage of
elites and mutants to 10% and 5% of the population, respectively.
The crossover probability is set to 0.6 and a restart parameter of
250 iterations is used to reset the non-elite partition. Candidate
paths Pk ,∀k ∈ K are computed using the familiar k− shortest paths
algorithm, where k = 50. The mutants, however, are restricted to
work on a much smaller candidate pathset (k = 3) in order to ac-
celerate the search. We evaluate two variants of the algorithm that

differ from each other in terms of how the individuals are chosen
from the population to perform the crossover. In the first variant
BRKGA-I, pM is drawn at random from Pe whereas pN is chosen
from the entire population P. For the crossover in the second vari-
ant BRKGA-II, vectors pM and pN are drawn at random from Pe
and Pē , respectively.

100 101
0

0.25

0.5

0.75

1

Performance ratio

Fr
ac
tio

n
of

so
lv
ed

in
st
an
ce
s

Reformulation
Shortest path
BRKGA-I
BRKGA-II

Figure 1: Performance profile of the solutionmethodologies.

Figure 1 depicts the computational performance of the proposed
solution methods by means of their performance profiles. We ob-
serve from the profile plot that, for any given problem instance,
BRKGA-II outperforms the other methods with a probability of 0.63
whereas the probability with which the compact reformulation per-
forms the best on any given instance is 0.03. Furthermore, we notice
that both BRKGA-I and BRKGA-II are still the most efficient of the
algorithms despite relaxing the quality of the solution to be within
a factor of 4 of the best performing solution method. Meanwhile,
the algorithm based on shortest path routings functions reasonably
well with a probability of 0.93 to return solutions of similar quality.

5 CONCLUSION
We revisit the robust network slice design problem using the notion
of layered graphs. As the resulting problem proved computationally
challenging for state-of-the-art Mixed Integer Programming solvers,
we devise biased random-key genetic algorithms for the robust
network slice design problem. For a vast majority of the considered
problem instances, the quality of the solutions yielded by the two
variants of the algorithm were exceptionally high in comparison to
those obtained from the commercial MIP solver.

REFERENCES
[1] A. Baumgartner, T. Bauschert, A. M. C. A. Koster, and V. S. Reddy. 2017. Optimi-

sation Models for Robust and Survivable Network Slice Design: A Comparative
Analysis. In GLOBECOM 2017 - 2017 IEEE Global Communications Conference. 1–7.

[2] Christina Büsing and Fabio D’Andreagiovanni. 2012. New Results about Multi-
band Uncertainty in Robust Optimization. In Experimental Algorithms, Ralf Klasing
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 63–74.

[3] José Fernando Gonçalves and Mauricio G. C. Resende. 2011. Biased random-key
genetic algorithms forÂăcombinatorial optimization. Journal of Heuristics 17, 5
(01 Oct 2011), 487–525.

[4] S. Orlowski, R.Wessäly, M. Pióro, and A. Tomaszewski. 2010. SNDlib 1.0-Survivable
Network Design Library. Networks 55, 3 (2010), 276–286.

[5] Matthias Rost and Stefan Schmid. 2016. Service Chain and Virtual Network
Embeddings: Approximations using Randomized Rounding. CoRR abs/1604.02180
(2016).

361


	Abstract
	1 Introduction
	2 Robust network slice design
	3 Biased random-key genetic algorithms
	4 Experimental results
	5 Conclusion
	References

