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ABSTRACT

Self-adjustment of parameters can signi�cantly improve the per-
formance of evolutionary algorithms. A notable example is the
(1 + (λ, λ)) genetic algorithm, where the adaptation of the pop-
ulation size helps to achieve the linear runtime on the OneMax
problem. However, on problems which interact badly with the
self-adjustment procedure, its usage can lead to performance degra-
dation compared to static parameter choices. In particular, the one
�fth rule is able to raise the population size too fast on problems
which are too far away from the perfect �tness-distance correlation.

We propose a modi�cation of the one �fth rule in order to have
less negative impact in scenarios when the original rule reduces the
performance. Our modi�cation, while still having a good perfor-
mance on OneMax, both theoretically and in practice, also shows
better results on linear functions with random weights and on
random satis�able MAX-SAT instances.
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1 INTRODUCTION AND PRELIMINARIES

The (1 + (λ, λ)) genetic algorithm [2] is a bright example of a suc-
cessful application of self-adjustment of parameters. Despite �rst
successes on optimizing problems other than OneMax — on lin-
ear functions with random weights taken from [1; 2] and royal
road functions [2], or a surprisingly good performance in practice
on MAX-SAT problems [4], supported theoretically in [1] — this
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Algorithm 1 (1 + (λ, λ)) GA, modi�ed self-adjustment of λ ≤ λ

1: F ← const ∈ (1; 2),U ← 5 . Update strength, the “1/5-th rule”
2: B ← 0, ∆← 10, λ+ ← 1 . Bad loops, λ growth span, base λ
3: x ← UniformRandom({0, 1}n )
4: for t ← 1, 2, 3, . . . do
5: p ← λ/n, c ← 1/λ, λ′ ← [λ], ` ∼ B(n,p)
6: for i ∈ [1..λ′] do . Phase 1: Mutation
7: x (i) ← Mutate(x , `)
8: x ′ ← UniformRandom(argmaxx (i ) f )
9: for i ∈ [1..λ′] do . Phase 2: Crossover
10: y(i) ← Crossover(x ,x ′, c)
11: y ← UniformRandom(argmaxy (i ) f )
12: if f (y) > f (x) then . Selection and Adaptation
13: x ← y, λ← max{λ/F , 1}, λ0 ← λ, B ← 0, ∆← 10
14: else

15: if f (y) = f (x) then x ← y
16: if (B ← B + 1) = ∆ then B ← 0, ∆← ∆ + 1
17: λ← min{λ0FB/(U−1), λ}

algorithm is quite slow to conquer other territories. A possible ex-
planation is that the method of parameter adjustment can behave
badly on problems with low �tness-distance correlation.

We investigate this problem by �rst performing a landscape
analysis for a few problems. Then we propose a modi�cation to
the one �fth rule which slows its (dis)adaptation. We then conduct
experiments on benchmark problems and con�rm that the negative
consequences of the one �fth rule’s misguidance are damped.

The extended version of this paper1 also proves that the runtime
of the modi�ed algorithm on OneMax is still linear. It also shows
that, if the (1+ (λ, λ)) GA takes the best values for λ from Section 2,
it outperforms other parameter choices on all tested problems.

2 ON EVALUATIONS UNTIL IMPROVEMENT

In Fig. 1a–1e we measured the impact of choosing particular values
for λ, depending on the Hamming distance to the optimum, for
problems OneMax, LinInt2, LinInt5, LinIntn and MAX-SAT [3]
with logarithmic clause density. For a single problem size n = 103,
and for all λ0 ∈ [1..50] we ran the (1 + (λ, λ)) GA with λ = λ0, for
103 times for each λ0 and for each problem. For all distances to the
optimum 1 ≤ d ≤ 500 we recorded the total number of evaluations
E(d, λ) spent in this location, and the total number of events I (d, λ)
that the algorithm �nd the better solution.

The top surfaces of the �gures display an approximation of the
expected number of evaluations until improvement = E(d, λ)/I (d, λ).
1Available at http://arxiv.org/abs/1904.07284
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Figure 1: Performance plots for di�erent functions, n = 103 everywhere, red cubes are choices for λ(d) within 2% of the best

27 28 29 210 211 212 213
4

6

8

10

12

14

16

Problem size

Ev
al
ua
tio

ns
/x

(1 + (λ, λ)), n
(1 + (λ, λ)), logn

RLS
(1+1) EA

(1 + (λ, λ)), n∗
(1 + (λ, λ)), logn∗

(a) OneMax
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(b) LinInt2
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(c) LinInt5
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Figure 2: Runtimes on di�erent functions

Red cubes on the bottom surface show near-optimal λ values, which
lie within 2% of the experimentally determined optimal choice.

The Fig. 1a generally con�rms the fact that λ ≈
√
n/(n − f (x))

is a near-optimal choice for the (1 + (λ, λ)) GA on OneMax. For
LinInt2 and LinInt5 the trend is probably still linear in logarithmic
axes. The top surfaces might mean that the progress is too slow for
the one �fth rule to keep λ in a good shape. The extreme LinIntn
shows that the optimal values of λ are concentrated around λ = 1,
and the entire landscape is too complicated for the GA. On theMAX-
SAT problem the curve of optimal λ appears to be bent compared
to OneMax. For large distances to the optimum it looks just like
OneMax, but gets more complicated towards the optimum.

3 MODIFICATION AND EXPERIMENTS

Themain idea of the proposedmodi�cation (Algorithm 1) to the self-
adjustment rule of the (1 + (λ, λ)) GA is to prohibit the immediate
growth of λ on long unsuccessful runs, while allowing raising it
arbitrarily high in more steps if needed. It also retains the chances
to perform iterations with rather small λ, which may be of use
when small λ are better. This modi�cation roughly squares the
number of iterations, needed by the (1+(λ, λ))GA to reach a certain
distant value of λ. As a result, when the maximal λ overshoots the
optimal value for the current distance, the algorithm still has some
iterations to spend around the optimal values even if there is no
�tness improvement yet, unlike the original (1 + (λ, λ)) GA.

We have evaluated the original (1 + (λ, λ)) GA with λ = n and
λ = 2 logn, the same algorithm with the modi�ed adaptation, the
(1 + 1) EA with the standard bit mutation and the randomized
local search. The same �ve problems as in Section 2 are used in
experiments. Each algorithmwas run for 100 times on each problem
with n ∈ {100, 200, 400, 800, 1600, 3200, 6400, 12800}.

The results are presented in Fig. 2a–2e. On OneMax, all variants
of (1 + (λ, λ)) GA behave well. The proposed algorithm is slightly

(about 10%) inferior to the original one, however, the dynamic is
still linear. On LinInt2 the logarithmically constrained versions
behave not linearly, but better than the unconstrained versions.
The modi�ed unconstrained GA is below the (1 + 1) EA, so at least
the constant factor is smaller comparing to the original GA. With
LinInt5,n the general trend of the unconstrained algorithms is to
rise above the runtime of the (1 + 1) EA, but the one with the mod-
i�ed self-adjustment strategy is always better. The slopes of these
plots allows conjecturing that the runtime scales asΘ(n(logn)2). On
the MAX-SAT problem the original unconstrained version seems
to climb the plot at much higher rates than the modi�ed one.

4 CONCLUSION

We proposed a modi�cation of the one �fth rule in self-adjustment
of the parameter λ for the (1 + (λ, λ)) GA. It is aimed at reducing
the unwanted e�ects, resulting in the decreased performance on
problems with low �tness-distance correlation. On OneMax the
proposed strategy works by maybe 10% worse, the runtime is still
linear in practice and theory. In cases pathological for the original
self-adjustment scheme, we were able to see stable improvements
over the classic (1 + (λ, λ)) GA on all problematic functions.
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