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ABSTRACT
The success of Multi-Objective Evolutionary Algorithms based on
Decomposition (MOEA/D) has generated great interest in the use
of a reference set of weight vectors to promote diversity within
non-dominated solutions. However, the quality of the solution set
obtained heavily depends on the relation between the weight dis-
tribution and the Pareto front’s shape.

This study focuses on a performance comparison of classical
techniques for weight vector generation, either based on mixture
design or low discrepancy sequences, and a novel approach for
updating the weight vectors during the evolutionary process. This
approach uses information from the non-dominated individuals to
generate weights vectors through a repulsion criterion. Preliminary
experiments indicate that this dynamic strategy provides significant
benefits when compared to the static Simplex Lattice Design (SLD).
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1 INTRODUCTION
Among the diversity of approaches for solving Multi-Objective
Optimization Problems (MOPs), those based on a set of reference
points have attracted significant attention, since they provide a well-
distributed set of non-dominated solutions under certain conditions.

In order to improve the distribution on a wide range of Pareto
front geometries, several methods for generating reference points
have been proposed in the specialized literature. In most of these
techniques, the set of weight vectors does not change during the
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execution (static methods). Usually, these methods are well suited
for a specific Pareto front shape. For instance, the Simplex Lat-
tice Design provides a remarkably well distribution in convex and
symmetric trade-off surfaces, but it shows a poor distribution in
non-convex, disconnected Pareto fronts. In order to deal with a
scenario in which the shape of the Pareto front is not known in
advance, a promising strategy is to reallocate the weight vectors
during the search.

2 STATIC TECHNIQUES FORWEIGHT
VECTOR GENERATIONWITHIN MOEAS

There are two main classes of generation methods for static weight
vectors. First, the mixture design theory, which has received a re-
freshed attention since the publication of MOEA/D [5], combines
m different chemical components to meet some properties and the
sum of their proportions equals 1. Other strategies aim at producing
a set of points over a geometrical object that minimizes a discrep-
ancy function, which measures the non-uniformity of the points.
This is the case of Uniform Design and low-discrepancy sequences.
For an exhaustive review on uniform point set generation strategies,
the interested reader is referred to [2, 3].

Computational experiments are carried out with six static gener-
ation methods: simplex lattice (SLD), two layer (2LD) and uniform
(UD) designs, and three low-discrepancy sequences (Halton, Ham-
mersley and Sobol). These techniques, embedded within MOEA/D-
PBI, are tested on the DTLZ7, Kite[4] and DTLZ1−1 functions,
which present interesting front characteristics. 50 executions are
performed for each technique and for 3, 5 and 8 dimensions, using
population sizes respectively equal to 300, 500 and 792 individuals.
Performances are evaluated with the hypervolume, Inverted Gen-
erational Distance and ∆-Diversity indicators. The results shown
in table 1 highlight that even though the mixture-based design are
the best options for 3 objectives, low-discrepancy sequences prove
to be useful for 5 or more objectives.

3 A NEWMETHOD FOR DYNAMICWEIGHT
VECTORS TUNINGWITHIN MOEA/D

Irregular Pareto front shapes, such as simplex-inverted, discon-
nected or degenerate fronts, may pose diversity issues for static
weight vector generation techniques. An intuitive solution to this
problem is to adaptively update the weight vectors during the
search. Some interesting attempts have been made along this line
(not described here due to space limitations). This work proposes a
new strategy embedded within MOEA/D to learn from the search
process and modify some weight vectors that are currently useless.

After a normal working stage (convergence phase), an updating
step is performed periodically until the end of the run.
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Test func. Ind. Dim. SLD 2LD UD Halton Hammersley Sobol

DTLZ7

HV
3 990.945 (55.688) 990.441 (0.037) 986.638 (0.379) 987.842 (0.293) 986.613 (55.027) 986.910 (0.253)
5 1.069E+05 (4.850) 1.061E+05 (5.187) 1.022E+05 (371.819) 1.043E+05 (22.3028) 1.0426E+05 (26.141) 1.034E+05 (24.959)
8 1.035E+08 (2.468E+06) 7.900E+06 (2.528E+06) 9.990E+07 (2.265E+06) 1.032E+08 (2.466E+06) 1.071E+08 (1.469E+06) 1.035E+08 (2.468E+06)

IGD
3 0.07394 (0.05019) 0.09139 (0.00087) 0.09956 (0.00198) 0.15887 (0.00331) 0.15747 (0.03474) 0.11198 (0.00094)
5 0.44697 (0.00014) 0.49108 (0.00109) 0.60650 (0.00234) 0.57903 (0.00147) 0.54387 (0.04625) 0.47385 (0.00168)
8 5.50966 (0.76683) 2.06705 (0.03775) 2.68654 (0.18682) 2.18940 (0.37848) 2.54961(0.15984) 3.31275 (0.09046)

∆
3 1.16310 (0.02635) 1.11955 (0.00412) 1.13114 (0.00273) 1.10188 (0.00362) 1.13750 (0.00870) 1.14247 (0.00528)
5 1.13303 (0.00126) 0.99462 (0.00234) 0.88141 (0.01355) 0.95872 (0.00482) 0.96102 (0.00682) 0.94166 (0.00273)
8 0.83376 (0.01582) 0.77612 (0.00856) 0.79483 (0.02371) 0.79810 (0.01649) 0.84530 (0.01395) 0.80764 (0.01338)

DTLZ1−1

HV
3 8.748E+07 (5.045E+03) 8.542E+07 (1.857E+04) 3.014E+07 (1.752E+06) 8.610E+07 (3.194E+04) 8.687E+07 (2.756E+04) 8.500E+07 (2.983E+04)
5 2.798E+05 (9.857E+04) 3.338E+05 (9.369E+08) 7.477E+10 (5.701E+10) 17.068E+10 (2.915E+10) 9.702E+10 (3.245E+10) 3.946E+10 (2.615E+10)
8 1.384E+10 (1.109E+12) 1.634E+10 (3.123E+12) 1.581E+12 (3.77E+12) 5.706E+11 (1.878E+12) 2.263E+12 (1.617E+14) 4.177E+11 (3.97E+12)

IGD
3 434.787 (0.003) 434.900 (0.002) 632.648 (15.161) 443.628 (0.733) 440.675 (0.772) 437.010 (0.287)
5 266.636 (0.001) 329.946 (9.161) 422.731 (31.141) 317.40 (11.325) 314.153 (8.284) 363.138 (17.885)
8 443.060 (52.621) 359.771 (105.137) 293.426 (47.861) 272.354 (37.366) 245.807 (27.484) 256.662 (28.378)

∆
3 1.02225 (0.00044) 0.80503 (0.00113) 0.48451(0.02258) 0.95142 (0.00290) 0.97185 (0.00250) 0.94629 (0.00297)
5 1.53902 (0.00128) 1.26958 (0.02335) 0.56430 (0.06038) 0.42409 (0.01466) 0.45392 (0.00960) 0.57704 (0.02842)
8 1.83157 (0.02632) 1.83165 (0.22269) 0.31331 (0.12027) 0.27656 (0.05288) 0.27697 (0.09214) 0.27210 (0.08816)

Kite

HV
3 0.72878 (0.00000) 0.72504 (0.00000) 0.10624 (0.03259) 0.22778 (0.01447) 0.22778 (0.01447) 0.10624 (0.03259)
5 0.42707 (0.02603) 0.47951 (0.03029) 0.44070 (0.01066) 0.48874 (0.03209) 0.48878 (0.03146) 0.48884 (0.02834)
8 0.573399 (0.00001) 0.573397 (0.00002) 0.573397 (0.00010) 0.573396 (0.00010) 0.573393 (0.00008) 0.573395 (0.00008)

IGD
3 0.03519 (0.00000) 0.04127 (0.00001) 0.54850 (0.03311) 0.39966 (0.03375) 0.39966 (0.03375) 0.34145 (0.02170)
5 0.22498 (0.05153) 0.18105 (0.04357) 0.27918 (0.02069) 0.17378 (0.06022) 0.17106 (0.05914) 0.17425 (0.05245)
8 1.504657 (0.08738) 1.504650 (0.08686) 1.504653 (0.12731) 1.504656 (0.10251) 1.504654 (0.10279) 1.504659 (0.10980)

∆
3 0.82997 (0.00007) 0.34145 (0.02170) 0.39773 (0.01823) 0.45036 (0.01963) 0.39773 (0.01823) 0.52810 (0.00187)
5 0.94935 (0.03379) 0.81522 (0.04836) 0.79679 (0.04210) 0.58869 (0.10628) 0.57093 (0.11085) 0.56877 (0.10286)
8 1.07546 (0.02374) 1.07547 (0.02818) 11.07546 (0.02407) 1.07548 (0.01684) 1.07549 (0.01739) 1.07552 (0.02153)

Each cell provides the indicator median value (std. deviation).

Table 1: Performance results of the static weight vector generation techniques.

(a) Hyb – DTLZ7 (b) Lin – DTLZ1−1 (c) Nor – Kite

(d) SLD – DTLZ7 (e) SLD – DTLZ1−1 (f) SLD – Kite

Figure 1: 3D results for dynamic and SLD techniques

Each non-dominated solution is marked as a Tabu point and cor-
responding weight vectors are re-adjusted over the unitary simplex
according to the solution positions. Then, the other weight vectors
are recomputed using a sub-population repulsion concept borrowed
from multimodal optimization (see [1]). For those solutions close
enough (in terms of Mahalanobis distance to avoid the dimensional
effect) to any Tabu point, a vector candidate is produced through
the combination of two Tabu vectors, subsequently projected on the
unitary simplex. Three combination techniques are implemented
here: linear (Lin), normal multivariate (Norm) and hybrid (Hyb).

A second set of experiments (with the same parameter settings as
before) is carried out to compare the three dynamic methods with
their static counterpart, using SLD as the initial weight generator.
Figure 1 shows the approximated fronts (blue) and weight vectors
(red) obtained with SLD and the best dynamic technique. In all

cases, the dynamic techniques transform the weight distribution
shape, which finally coincides with the approximate location of
the real Pareto front. With static SLD, most solutions lie on the
front boundaries, since many points on the simplex surface are
oriented towards “blank regions” (without Pareto optimal solutions).
Although not provided here, performance indicators confirm the
visual observation: dynamic techniques almost always outperform
the static one (yet, in some cases, IGD turns out to be better for
SLD). Therefore, the weight adaptation strategy allows generating
a dense distribution of solutions inside the front boundaries, with
some drawbacks though: boundaries and the extreme points may
be sparsely described , while the point distribution inside the front
shape is dense but no so uniform (explaining the IGD deficiencies).

4 CONCLUSIONS
This study allowed identifying some trends for weight vector gen-
eration techniques, when facing MOPs with complex Pareto shapes.
Using static methods, mixture based designs work well for low
dimensions but low-discrepancy sequences improve their perfor-
mance with the number of objectives. Further, a novel on-line
weight adaptation strategy is introduced, which obtains promising
results and provides some guideline for future improvements.
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