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ABSTRACT
It seems very intuitive that for the maximization of the OneMax

problem f (x) :=
∑n
i=1 xi the best that an elitist unary unbiased

search algorithm can do is to store a best so far solution, and to

modify it with the operator that yields the best possible expected

progress in function value. This assumption has been implicitly

used in several empirical works. [Doerr, Doerr, Yang: GECCO 2016]

formally proved that this approach is indeed almost optimal.

In this work we demonstrate that drift maximization is not opti-
mal. More precisely, we show that for most fitness levels between

n/2 and 2n/3 the optimal mutation strengths are larger than the

drift-maximizing ones. This implies that the optimal RLS is more

risk-affine than the variant maximizing the step-wise expected

progress. We show similar results for the mutation rates of the clas-

sic (1+1) Evolutionary Algorithm (EA) and its resampling variant,

the (1+1) EA>0.

As a result of independent interest we show that the optimal

mutation strengths, unlike the drift-maximizing ones, can be even.
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1 INTRODUCTION
It is well understood that iterative optimization heuristics like local

search variants, evolutionary algorithms, estimation of distribution

algorithms, etc. can benefit from non-static choices of the parame-

ters that determine their search radius, population size, or selective

pressure. The question how to select these parameters dynami-

cally is the subject of parameter control, which studies different

techniques to achieve a good fit between suggested and optimal

parameter values.

Complementing a diverse body of empirical works demonstrat-

ing advantages of parameter control mechanisms [8], there is

an increasing interest in proving such benefits by mathematical

means [4]. The vast majority of theoretical works consider the op-

timization of OneMax, the problem of maximizing the function

Om : {0, 1}n → R, x 7→
∑n
i=1 xi . OneMax also plays a prominent

role in empirical research on parameter control. In both commu-

nities, it is argued that the consideration of OneMax provides a

“sterile EC-like environment” [6], in which the optimal parameter

values are well understood.
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In light of the existing literature it is interesting to note that

most works, implicitly or explicitly, assume that for the considered

algorithms the optimal strategy for the maximization of OneMax

is a greedy selection of the best so far solution, and the variation

of the same by the mutation rate/step size that maximizes the

expected gain in function value, see, for example, [1, 7]. Thierens [9]

explicitly argues that a particularly useful property of OneMax,

which makes this problem a very suitable benchmark for adaptive

operator selection, is the fact that the reward of an operator can

be computed exactly. He then proceeds by comparing the step-

wise expected fitness gains made by different operators, and ranks

operators by this value. He thus uses as underlying assumption

that drift-maximization is optimal.

That this widely believed-to-be-optimal drift-maximizing strat-

egy is indeed almost optimal was formally proven in [5]. More

precisely, it is shown in [5] that the best unary unbiased black-box

algorithm for OneMax cannot be better by more than an additive

o(n) term than the Randomized Local Search (RLS) variant that flips

in each iteration the drift-maximizing number of bits in a best-so-

far solution. Both algorithms have an expected optimization time

n ln(n) − cn ± o(n), for a constant c between 0.2539 and 0.2665.

We demonstrate in this work that maximizing drift is not optimal

neither for RLS nor for the (1+1) EA nor for its resampling variant,

the (1 + 1) EA>0, suggested in [3].

In the full version of our work, which is available in [2], we ex-

plain where the difference between optimal and drift-maximizing

strategies comes from, define precisely how to obtain the optimal

mutation rates, numerically compute these for some selected di-

mensions up to n = 10, 000, and analyze the differences between

drift-maximizing and optimal mutation rates. We also compare

the performances of optimal and drift-maximizing algorithms, and

show that the differences in mutation rates/step sizes – albeit sig-

nificant – result only in marginal differences in terms of overall

running time. Given the above-mentioned results in [5], the last

statement is not surprising. The main contribution of our work is

therefore not to be found in tremendous performance gains, but

in new structural insights for the optimization of OneMax, the

arguably most widely used benchmark for parameter control and

adaptive operator selection mechanisms.

We note that the argument why drift-maximization is not opti-

mal is quite easy to understand. Basically, our result is build upon

the observation that the drift-maximizer values a potential fitness

progress of i by exactly this gain. More precisely, in the computation

of the expected drift the probability of creating an offspringy of x is

multiplied by the difference max{0,Om(y) − Om(x)}, for each pos-

sible offspring y. The optimal algorithms, however, value a fitness

gain of i by the gain in the expected remaining running time. Since

this difference in expected remaining running time is much larger

than the fitness difference, the optimal RLS and (1 + 1) EA variants

use mutation rates that are larger than the drift-maximizing ones.

Put differently, they trade a smaller expected progress for a slightly

425

https://doi.org/10.1145/3319619.3321952


GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Nathan Buskulic and Carola Doerr

larger probability of making a larger fitness gain. That is, the op-

timal algorithms are more risk-affine than the drift-maximizing

ones. This quite intuitive fact seems to have been overlooked in the

evolutionary computation community.

Full Version and Online Repository. The full version of this

work can be found in [2]. The GitHub page of this project provides

drift-maximizing and optimal step sizes/mutation rates for problem

dimensions up to n = 10,000 and for the three algorithms RLS, the

(1 + 1) EA, and the (1 + 1) EA>0. Detailed performance data are

available for 16 different variants of these algorithms.

2 EXAMPLE: RLS
We briefly sketch the main effects for RLS.

We denote by RLSopt the RLS variant which flips in each itera-

tion exactly kopt(Om(x)) pairwise different bits which are chosen

uniformly at random. Here kopt : [0..n − 1] → [0..n] is a function
which maps each fitness value to a mutation strength such that

the overall expected running time is minimized. Likewise, RLS
drift

is the RLS variant which uses the drift-maximizing function drift

to determine the mutation strengths. Put differently, k
drift

is the

function which maps each fitness level ℓ to the mutation strength

k that maximizes the expected progress

E[∆(n, ℓ,k)] := (1)

E[max{Om(y) − Om(x), 0} | Om(x) = ℓ,y ← flipk (x)]

ℓ+k∑
i=ℓ+1

(i − ℓ)P[Om(y) = i | Om(x) = ℓ,y ← flipk (x)]

=

k∑
i= ⌈k/2⌉

(n−ℓ
i
) ( ℓ
k−i

)
(2i − k)(n

k
) .

Interestingly, it suffices to regard n = 3 for an example for

which RLSopt , RLS
drift

. The following table summarizes for n = 3

the functions k
drift

, kopt, and the expected remaining running

times E[T
drift
(ℓ)] and E[Topt(ℓ)] for RLSdrift and RLSopt, respec-

tively, when starting in a solution x of fitness Om(x) = ℓ. In col-

umn p0(ℓ) we list the probability that a random initial solution

has fitness value ℓ. Since uniform random initialization is used,

p0(ℓ) =
(n
ℓ

)
/2n . The last line provides the overall expected opti-

mization time of both algorithms. Note that, by the law of total

probability, E[T ] = 1 +
∑n
i=0 p

0(ℓ)E[T (ℓ)].

ℓ p0(ℓ) k
drift
(ℓ) E[T

drift
(ℓ)] kopt(ℓ) E[Topt(ℓ)]

3 1/8 - 0 - 0

2 3/8 1 3 1 3

1 3/8 3 4 2 3

0 1/8 3 1 3 1

E[T ] 3.75 3.375

Optimal Mutation Strengths Need Not be Uneven. With

this example, we not only prove that RLSopt , RLS
drift

, but we

also make another interesting observation, which concerns the

parity of the values kopt(n, ℓ). It was proven in [5] that k
drift

takes

only odd values, since for every k the expected drift of flipping 2k
bits is strictly smaller than that of flipping 2k + 1 bits. The example

above shows that the situation is different for kopt. More precisely,

we have seen that in the situation n = 3 and ℓ = 1 flipping 2 bits is

optimal.

Figure 1: Comparison of kopt(n, ℓ) and kdrift(n, ℓ) for n = 1,000

(zoom into fitness levels 480 ≤ ℓ ≤ 545).

Figure 1 plots the interesting region of kopt(ℓ) and kdrift(ℓ) for
n = 1,000; this picture is very similar across all dimensions n. In
particular it holds for all n that the curves cross at fitness level

ℓ = n/2. For smaller values, the optimal mutation strengths are

smaller or identical to drift-maximizing ones, and the situation is

reversed for fitness levels ℓ > n/2.
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