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ABSTRACT
Representations, or sensor-independent internal models of the envi-
ronment, are important for any type of intelligent agent to process
and act in an environment. Imbuing an artificially intelligent system
with such a model of the world it functions in remains a difficult
problem. However, using neuro-evolution as the means to optimize
such a system allows the artificial intelligence to evolve proper mod-
els of the environment. Previous work has found an information-
theoretic measure, R, which measures how much information a
neural computational architecture (henceforth loosely referred to
as a brain) has about its environment, and can additionally be used
speed up the neuro-evolutionary process. However, it is possible
that this improved evolutionary adaptation comes at a cost to the
brain’s ability to generalize or the brain’s robustness to noise. In
this paper, we show that this is not the case; to the contrary, we find
an improved ability of the to evolve in noisy environments when
the neuro-correlate R is used to augment evolutionary adaptation.
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1 INTRODUCTION
Neuro-evolution has shown promising results in creating more
capable and adaptable solutions for problems in artificial intelli-
gence [5, 11]. One of the downsides to this process is that the search
itself is inherently random and as such, an optimal agent may not
evolve quickly. Similarly, it is possible that the evolutionary search
gets stuck, and results in a less than optimal solution. To com-
bat this defect, many methods have been proposed to accelerate
neuro-evolution. The method to reward solutions that are more
modular [4] is technically the closest to the approach used here.

One issue that has already been identified to be specifically trou-
blesome in deep learning is representations. It seems as if neural
networks are easily fooled [9] either because they are over fitted,
or because they simply can not generalize well. They lack a robust
internal model, instead relying too heavily on training irregularities.
However, it has been shown that neuro-evolution can very well
overcome this limitation, and allows systems to create cognitive
agents that have meaningful and robust representations about their
environment [8]. Furthermore, it has been shown that one can aug-
ment evolutionary adaptation [10] and the use of representations
by first measuring representations and then adding said measure-
ment to the fitness function. This is similar to a multiple objective
optimization [12], but where both parameters are mostly in line
with the same goal.

We investigate two aspects of intelligence that might suffer from
trade-offs and are relevant for artificial intelligence applications:
the brain’s ability to generalize and to be robust against noise. Of-
ten in machine learning the distinction between robustness and
generalization is hard to make, and the terms are often used in-
terchangeably. Here generalization is defined as the ability to deal
with a new task that the system was not explicitly trained on. Ro-
bustness on the other hand is the ability to perform the same task
under noise.

In this paper, we demonstrate that neither the ability of Markov
Brains to generalize nor the brain’s robustness to noise is reduced
when the evolutionary process is augmented by using R. Moreover,
we found co-evolving with R resulted in better performance when
evolving R in noisy environments.

2 MATERIALS AND METHODS
All experiments were carried out using evolvable Markov Brains [6]
in the MABE framework [3]. For these brains R (representations)
and the smearedness (structure) of these representations can be
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Figure 1: Mean performance of agents evolved under dif-
ferent levels of noise (x axis) with (solid line) and without
(dashed line) augmenting the GA with R. The performance
(W̄ ) is from agents from 350 replicate experiments for each
level of noise, after 40,000 generations of evolution. Error
bars indicate the standard error. The results were signifi-
cantly differentwhen testedwith aWilcoxonRank-Sum test
(p = 5.95e − 5). These agents were evolved to catch blocks of
size 2 and avoid blocks of size 4 and had a gap width of 2.

easily quantified [7, 8, 10]. Markov Brains were optimized using
a genetic algorithm in 350 replicates over 40,000 generations to
perform an active categorical perception task [1, 2]. In this task,
blocks of different sizes fall towards the agent who has to catch
small and avoid large blocks. In order to augment evolution the
performance of the agents was calculated using the following fitness
function:

W = 1.10(C−I )(1 +
R

Rmax
) (1)

where C is the number of correct actions, and I the number of
incorrect ones. R is the measure of the agent’s representations, and
Rmax is the calculated maximum value of R.

The ability of the evolved brains to generalize was tested by
quantifying their performance using blocks of sizes agents did not
encounter during evolution. Robustness was quantified by measur-
ing the performance of the agents while their hidden states were
infused with noise in the form of random zeros and ones.

3 RESULTS
We asked if augmenting the search of a genetic algorithm (GA)
by using R has negative side effects, specifically on the ability of
agents to be robust and to generalize. We first affirmed that agents
indeed evolve faster and have better final performance when the
GA was augmented by using R. We found no significant loss of
the agents ability to generalize evolved by a GA augmented with
R versus agents evolved without. In rare cases we found a slight
improvement in the agents ability to generalize when evolved using
R to augment the GA, however without any identifiable pattern.

Similarly, agents evolved by a GA augmented by R showed no
significant loss or improvement towards their ability to deal with
noise. Their robustness was unaffected. However, when evolving
agents not only by augmenting R but by also infusing noise into
their sensor states during evolution, we found an improved perfor-
mance under noise (see Figure 1). This suggests that augmenting
a GA with R in conjunction with noise allows agents to become

more robust during evolution compared to agents evolved by a GA
not augmented with R.

4 CONCLUSIONS
The work described here reaffirms the benefits of R as a neuro-
correlate capable of accelerating rates of adaptation, and prompts
several new avenues of research to follow. First of all, the use of R
does not compromise the ability of an evolved agent to generalize
or to be robust against sensor noise. Unfortunately, performance
optimization by a GA is very different from gradient descent or
other optimization methods in deep learning. As such, R can not
simply be applied in that context, even though these systems seem
to struggle with creating internal models and representations.

The most interesting aspect we observed pertains to the effect
that augmenting the GA with R has on evolution under noisy condi-
tions. While using R made no difference to sensor noise robustness
when agents were evolved without noise, evolution under noise
resulted in significantly better adaptation when the GA was aug-
mented with R. This implies two things: evolving representations
under noise might be a harder challenge, and the augmentation
therefore is advantageous. However, more interesting is the impli-
cation that one might be able to take advantage of the observation
that augmenting the GA with R allows better performance under
noise. Sensor noise introduces error into the fitness function; re-
ducing the number of trials performed reduces the sample size and
similarly introduces error into the fitness function. Perhaps instead
of testing an agents performance thoroughly on all possible test
cases, one can use a subset of the possible cases while augmenting
the GA with R. We seek to investigate this possibility further.
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