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ABSTRACT
Biclustering is a growing in popularity machine learning tech-
nique which searches for patterns in subsets of rows and subsets
of columns. One of the recent advances in biclustering was the
development of EBIC, a multi-GPU method based on evolutionary
computation, which was demonstrated to outperform some of the
leading methods in the field. In this short paper, we evaluate a
couple of potential improvements to the method.
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1 INTRODUCTION
Biclustering is an increasingly popular data mining technique,
which focuses on finding similarities between selected rows and
selected columns of the input data. Biclustering methods return
a series of biclusters – subsets of rows and subsets of columns
with certain characteristics [1, 2], such as row-constant (the values
in each row are exact, but the values between rows may differ),
column-constant (similarly, but for columns), shift, scale, shift-scale
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(where each row is a shifted and/or scaled version of a base row),
trend preserving patterns (monotonously increasing), or other.

Although multiple methods have been proposed so far, it wasn’t
until 2018 that any method accurately identified the majority of
aforementioned patterns with sufficient accuracy [1, 7, 10, 12]. Such
advance in the field was the development of Evolutionary search-
based BIClustering (EBIC), which achieved very high recovery
and relevance scores across different patterns. The method outper-
formed some of the leading biclustering methods by a large margin
and was further optimized in order to handle big data [6, 9].

Themain focus of this paper is indicating potential areas inwhich
EBIC could be further improved. We evaluate different variants of
the method that may potentially improve its performance.

2 METHODS
EBIC is a multi-GPU biclustering method based on evolutionary
computation [6, 8, 9]. The method represents hybrid biclustering
approaches for data mining [3–5]. EBIC facilitates multiple evolu-
tionary strategies, including crowding, elitism or tabu list. Each bi-
cluster in EBIC is represented as a series of columns which enforces
a monotonously increasing ordering of rows. After initialization
of biclusters and calculation of their fitnesses in parallel on GPUs,
genetic operators (i.e. one of 4 different types of mutation or a
crossover) are used in order to modify the set of biclusters. The
main workflow of EBIC is presented in Figure 1.

TRENDS

INITIALIZATION

FITNESS

EVALUATION

TRENDS

CONSTRUCTION
(Genetic operators)

ALLOWANCE

(tabu list)

TOURNAMENT

SELECTION

(with crowding)

TOP RANK LIST

UPDATE

POPULATION

PREPARATION

BICLUSTERS

DETECTION

Figure 1: The basic scheme of EBIC. Darkened are parts of
the method executed in parallel on GPUs.

For evaluation, a collection of 90 datasets with different square
patterns from Wang et al. were used [12]. Narrow and overlapping
patterns were beyond the scope of this paper. In each of the scenar-
ios the methods were expected to detect from 3 to 5 biclusters of
size 15x15, 20x20 and 25x25, which were implanted within the ma-
trix of size 150x100, 200x150 and 300x200 respectively. Clustering
Error (CE) was used as a quality measure. This subspace cluster-
ing evaluation metric proposed by Patrikainen et al. [11] allows
for more objective evaluation of the performances, as it heavily
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Table 1: The performance of variants of EBIC ondifferent patterns according toClustering Error (CE)metric. All the candidates
were run for 5k iterations and compared with baseline version of the method at 5k and 20k iterations. The higher CE score,
the better. The results outperforming a baseline version of EBIC with 5k iterations are in bold.

Algorithm\Patterns Trend-preserving Column-constant Row-constant Shift-scale Shift Scale
ebic-20k 1.000000 0.996800 0.993442 0.796064 0.951548 0.717118
ebic-5k 0.961967 0.844396 0.977697 0.765907 0.846328 0.656557
ebic-init 0.967374 0.888879 0.993442 0.741710 0.854194 0.596353
ebic-long 0.939329 0.846344 0.978811 0.778567 0.849951 0.612509
ebic-large 0.799447 0.792879 0.861758 0.544965 0.690673 0.452145
ebic-both 0.481338 0.516778 0.923864 0.265870 0.548694 0.234442
ebic-j2 0.875015 0.848505 0.976379 0.841831 0.806257 0.643479
ebic-post 0.963538 0.870206 0.977361 0.772749 0.852978 0.705894

penalizes incorrect assignments. Each of the candidates was run
for 5k iterations (the default of EBIC). The recommended setting
of EBIC for synthetic datasets (20k iterations) was included as the
reference.

2.1 Candidates for improving EBIC
Based on the observation of EBIC performance, we have indicated a
couple of areas that could potentially lead to improving the method.
In this paper we focused on initialization of the first population,
increasing the size of the population at cost of the number of iter-
ations, modification of fitness function and postprocessing of the
results. The following prototypes were evaluated in this paper:

Sensible initialization (ebic-init). Each generated trend is sorted
according to the order of the randomly selected row.

Initialization with longer trends (ebic-long). The first population
is initialized with trends of 4-8 columns, instead of 2-4 by default.

Increasing the size of the population at cost of a number of iterations
(ebic-large). The total number of evaluations remains the same, but
a larger population is used at each iteration.

Combination of crossover and mutation (ebic-both). In each itera-
tion after crossover, one of the mutation operators is used.

Fitness function modification (ebic-j2). The algorithm is encour-
aged even more to find biclusters with a larger number of columns.

Postprocessing of the results (ebic-post). Additional filtering is
performed at the final step to eliminate trends that overlap with
each other by more than 50% (the default rate of overlap is 75%).

3 RESULTS
The averaged CE score from 15 datasets is presented in Table 1. It
might be noticed that for some of the patterns three of the variations
of EBIC (ebic-init, ebic-long and ebic-post) performed slightly better
than the baseline method, but still not as good as the recommended
setting. Three other candidates (ebic-large, ebic-both and ebic-j2)
were worse than the baseline model in the majority of the scenarios.

4 CONCLUSIONS
In this paper we proposed and evaluated six different modifica-
tions of EBIC. Some of the prototyped variations of the method

performed slightly better than the baseline method, but those dif-
ference weren’t significant enough to offer a major improvement
for the method. Our future effort will be focused on improving the
speed of the convergence of EBIC as well as its performance for
detection of scale and shift-scale patterns.
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