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ABSTRACT

We present a feasibility study on evolving controllers for a group
of wheeled robot predators that need to capture a prey robot. Our
solution method works by evolving controllers in simulation for
100 generations, followed by 10 generations on real robots. The
best controllers are further evaluated by their sensitivity for the
initial positions. The results demonstrate the practical feasibility of
this approach and give an indication of the time required to develop
good solutions for the predator-prey problem.
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1 INTRODUCTION

Evolving behaviour strategies for robots in a predator-prey scenario
is one of the classic themes in evolutionary robotics [3]. After many
years of being an academic research subject, the problem of de-
signing successful prey capturing strategies for robots is becoming
practically relevant by the recent advances in drone technology.
Inspired by such (future) applications we conduct a feasibility study
in a simplified scenario to assess the practicability of an evolution-
ary approach and answer two questions: 1) Will it work? and 2)
How long will it take?

2 SYSTEM DESCRIPTION

Our approach consists of three stages, 1) evolution in simulation
for many generations, 2) evolution on the real robots for fewer
generations, 3) evaluation of best evolved controllers’ sensitivity to
different starting conditions. By design, we use exactly the same
evolutionary algorithm in simulation and in the real world. In
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the real world, we use a set of Thymio II robots! extended with a
Raspberry Pi (that can handle wifi) and an extra battery. The field for
pursuit and evasion is a 2m by 2m square arena without obstacles.
Instead of adding cameras to the robots, we use an overhead camera
above the arena to provide location information. The camera can
distinguish each of the robots and recognize their positions and
directions. The simulation environment is built on Gazebo?, where
we construct the models of Thymio II robot and a 2m by 2m field
without obstacles.

While the ‘bodies’ of predators and the prey are identical, their
controllers are different. For the prey, we use a smart but fixed
evasion strategy based on a 2D Gaussian function to model the
danger zone around the predators and a 1D Gaussian function to
model the danger zone close to the walls. Using this danger zone
map (continually updated during a chase), the prey tries to navigate
towards less dangerous places to avoid the predators.

The predator controllers are neural networks with three input
nodes, one hidden layer with four neurons and two outputs nodes
that drive the two wheels. The first input is the inverse of the
distance from the predator to the nearest predator, the second input
is the angle between the orientation of predator and the direction of
prey and the third input is the distance between the predator itself
and the prey. Both the hidden and the output layers use hyperbolic
tangent as the activation function.

The fitness of a predator controller is determined by testing it
during a test episode. Equation (1) shows the fitness function, where
dj; is the distance between predator i and prey at time t and r;;
is the distance between predator i and nearest predator at time t.
Np is the number of predators. For each predator we compute the
average distance % Zthl dir to the prey and the average distance
to the nearest predator % ZtT:I Tit.
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The evolutionary algorithm we use is the CMA-ES with population
size 13 and the recommended parameter values from [1].

3 EXPERIMENTS

Comparing 3, 4, and 5 predators in preliminary experiments we
found 5 too many, 3 and 4 performing comparably. Hence we choose
3 for practical reasons. In the beginning of a test episode of 60
seconds the prey is placed at the center of the square and the three
predators are lined up along one of the edges of the arena. The
inputs for the robot controllers are provided through wifi based on
an overhead camera that collects the coordinates, orientation and

!https://www.thymio.org/home-en:home
Zhttp://gazebosim.org/
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unique IDs of the robots. Figure 1 shows the fitness development
during the real world evolution. Generation 100 and 101 contain
the same set of controllers, but the fitness values are determined in
simulation (gen 100) or on real robots (gen 101). The data show a
clear reality gap here, the average fitness drops from 2.94 to 2.12,
while the maximum fitness drops from 3.77 to 2.48. The red, green
and blue crosses designate the 3 best controllers with fitness 4.55,
4.54, 4.11, the corresponding trajectories of the test episodes are
shown in Figure 2.
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Figure 1: Evolution in the real world and the reality gap.

(a) Fitness = 4.55

(b) Fitness = 4.54 (c) Fitness = 4.11
Figure 2: Trajectories of the top three individuals evolved in
the real world. The green line is the trajectory of prey.

To evaluate how well these controllers work in different situa-
tions, we perform a robustness test on the three best controllers.
(For the red, green, and blue controllers as identified in Figure 1).
We generate 1000 random initial positions for the robots and run
a test episode for each of these in simulation. The results are ex-
hibited in the histograms of Figure 3 that show the number of test
episodes ending with a given fitness level .

4 DISCUSSION AND CONCLUSIONS

The “elephant in the room” in evolutionary robotics studies is al-
ways the reality gap [2]. Our system suffers from this too; as exhib-
ited in Figure 1, the fitness drops by approximately 30% when we
switch from simulation to real robots (average fitness: 28%, max-
imum fitness: 34%). The differences in execution times are even
greater. Evolution in the simulated world took about twenty min-
utes to run 100 generations with population size 13 on an Intel
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Figure 3: Robustness histograms of the best three controllers
evolved on real robots.

Core™ i5-5200U CPU @ 2.20GHz X 4. Running 10 generations with
the same population size on the real robots took about 2.5 hours.
Thus, evolution in the real world for 100 generations would take
about 25 hours to complete — approximately 70 times slower. Exe-
cution times are of course subject to many practical details, such as
the computers clock speed, number of cores, simulation accuracy,
reset time of the physical robots, etc., but these numbers give an
indication of the time vs. quality trade-off inherent to evolutionary
robotics experiments.

Is summary, we found that the two-stage evolutionary system
was able to produce predators that successfully captured the prey in
the real world. The fast simulations allow testing different algorith-
mic options, e.g., vary the number of predators or compare several
EA variants. In the meanwhile, running evolution on the real robots
can mitigate the reality gap problem. The main disadvantage we
encountered was the time needed for the hardware experiments
that were 70 times slower than the simulations. Using bigger pop-
ulations we expect that this ratio becomes even worse. On the
positive side, 10 real world generations turned out to be enough
to reach the fitness level achieved in 100 simulated generations.
Thus, we can consider the simulations as a good way to kick-start
evolution in hardware and to reduce the total time needed to evolve
a solution that works in the real world. With our current setup
(Thymio robots, 2m X 2m arena, overhead camera) the combined
software-hardware evolutionary system needed less than 24 hours
clean run-time. Of course, there is an overhead of implementing
and adjusting the simulator and setting up the physical arena, but
the total duration of this project was less than three months.
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