
On the Design of S-box Constructions with Genetic
Programming

Stjepan Picek
Delft University of Technology

The Netherlands

Domagoj Jakobovic
University of Zagreb,

Faculty of electrical engineering and computing
Croatia

ABSTRACT
In this paper, we try to combine the best from the world of heuristics
and algebraic constructions for the design of S-boxes: we evolve
algebraic constructions that produce S-boxes with as low as possible
differential uniformity. Our approach is novel yet very simple and
is allowing us to obtain constructions valid for any S-box size of
practical interest.

CCS CONCEPTS
• Security and privacy → Block and stream ciphers; • Com-
puting methodologies→ Discrete space search.

KEYWORDS
Cryptography, S-boxes, Genetic Programming
ACM Reference Format:
Stjepan Picek and Domagoj Jakobovic. 2019. On the Design of S-box Con-
structions with Genetic Programming. In Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’19 Companion), July 13–17, 2019,
Prague, Czech Republic. ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/3319619.3322040

1 INTRODUCTION
In modern cryptography, a common type of cryptographic algo-
rithms (commonly known as ciphers) are block ciphers [5]. To build
the nonlinear part in block ciphers, a common option in modern
designs is to use one or more Substitution Boxes (S-boxes, also
known as vectorial Boolean functions, (n,m)-functions). Not all
S-boxes provide the same resilience against cryptanalysis and to-
day, there are numerous properties describing the resilience of
S-boxes against certain types of attacks like the differential crypt-
analysis [1]. A key property connected with the resilience against
differential cryptanalysis is called differential uniformity. With dif-
ferential uniformity, the lower the value, the better the resilience.
S-boxes that have minimal possible differential uniformity (and thus
have the best possible resilience against differential cryptanalysis)
are called Almost Perfect Nonlinear (APN) functions. To construct
such S-boxes, we know only several algebraic constructions. Such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3322040

algebraic constructions are deterministic (always giving the same
result) and producing a class (or infinite class) of constructions,
which means we can use the same construction to obtain solutions
for different S-box sizes. Besides algebraic constructions, we could
also use heuristics to obtain APN functions. To that end, we propose
to use genetic programming (GP) to evolve algebraic constructions
resulting in S-boxes with good differential uniformity. To the best
of our knowledge, this is the first work considering something like
that. The only (similar) approach is given by Picek and Jakobovic
where they used GP to evolve secondary constructions resulting in
bent Boolean functions [7].

2 S-BOXES AND THEIR PROPERTIES
Let n be a positive integer, i.e., n ∈ N+. We denote by Fn2 the n-
dimensional vector space over F2 and by F2n the finite field with
2n elements, where F2 is the Galois field (GF) with two elements.
The addition of elements of the finite field F2n is denoted with “+”,
as usual in mathematics. Let F be a function from Fn2 into Fn2 with
a ∈ Fn2 and b ∈ Fn2 . We denote:

DF (a,b) =
{
x ∈ Fn2 : F (x) + F (x + a) = b

}
. (1)

The entry at the position (a,b) corresponds to the cardinality of
the delta difference table DF (a,b) and is denoted as δ (a,b). The
differential uniformity δF is then defined as [6]:

δF = max
a,0,b

δ (a,b). (2)

Functions that have differential uniformity equal to 2 are called
the Almost Perfect Nonlinear (APN) functions. When discussing
the differential uniformity property for permutations (i.e., where
the input and output dimension of an S-box are the same), the best
possible value is 2 for any odd n and also for n = 6. For n even and
larger than 6, this is an open question. For a long time, the only
examples of constructions of APN functions were the power func-
tions. Today, besides power functions, we know of only a few more
constructions resulting in APN functions that are not equivalent
to power functions, see e.g., [2, 4]. For further information about
S-boxes and their properties, we refer interested readers to [3].

3 GP APPROACH AND RESULTS
The function set consists of several functions one can find in alge-
braic constructions: 1) trace function (Tr (x) = x + x2 + . . . + x2

n−1
),

2) addition in the field, 3) multiplication in the field, and 4) ex-
ponentiation in the field. GP uses a 3-tournament selection and
the mutation operator is executed once on a given individual with
a probability 0.3. The variation operators are simple tree cross-
over, uniform crossover, size fair, one-point, and context preserving

395

https://doi.org/10.1145/3319619.3322040
https://doi.org/10.1145/3319619.3322040
https://doi.org/10.1145/3319619.3322040

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Stjepan Picek and Domagoj Jakobovic

Table 1: Statistical results for S-box constructions

Size Min Max Average Std Dev
Multiple dimensions

N/A 0 99.73 0.38 1.37

Single dimension

3 × 3 0 6 0.36 1.31
4 × 4 0 14 0.75 2.92
5 × 5 0 30 1.71 6.46
6 × 6 0 62 3.43 13.4
7 × 7 0 126 4.47 20.98
8 × 8 0 254 12.2 51.29
9 × 9 0 510 18.73 89.02

crossover (selected at random), and subtree mutation [8]. The initial
population is created at random, population size equals 100, and
every experiment is repeated 30 times. The stopping condition is
the number of generations without improvement, which we set to
100. We minimize the following fitness function:

f itness = |δF − 2|. (3)

There are two cases we investigate:
(1) Algebraic constructions valid for multiple S-box sizes.

Genetic Programming evolves constructions for size n and
for any power exponent d . This means, for each solution
(construction), we iterate over alld values in order to evaluate
the results. For each construction where the fitness value
equals 0, we also test that construction for n

′

, where n
′

> n
and the final fitness value is the fitness obtained for the
construction for every tested dimension. Once the testing
for larger dimensions starts, we only use the value d that
resulted in correct function in the original dimension n.

(2) Algebraic constructions valid for a single S-box size.
We look for algebraic constructions valid only for size n.
There, we give additional constraint that the evolved func-
tion cannot use any known APN exponents. These experi-
ments are done for sizes in the range [3, 9].

All the results are given in Table 1. The first scenario we consider
is evolving constructions that produce S-boxes with required differ-
ential uniformity in multiple sizes. First, we see that the minimal
value show GP is able to find constructions working in multiple
dimensions. When looking at the average value, we can further-
more observe that the evolution process was very successful in
most of the runs. Finally, we explain the maximal value behavior.
Very large values indicate that on some occasions the constructions
found for size 3 do not generalize to one or more larger sizes. In
such instances, the fitness can grow very fast since the differen-
tial uniformity values are in the range [2, 2n], which means that
only a single dimension where the construction does not work can
degrade the final fitness value significantly.

Next, we investigate how difficult is it to evolve a construction
that works in only a single dimension. Naturally, already from the
previous results one can deduce that this should not be difficult.
Indeed, if we are able to find constructions working for multiple di-
mensions, thenwe should be also able to find constructions working
in a single dimension. Still, there are two additional considerations.
First, we do not allow the use of known APN exponents. Second,
we evolve constructions for each dimension. Before, it was enough

to work with the smallest size (3 × 3) and find a construction that
generalizes but now we directly work in search spaces that are
much larger. We see that we are able to find APN construction
for each dimension since all minimum values are 0, which is the
global optimum. The maximal values are of the form 2n − 2, which
means they represent linear functions that have the worst possible
differential uniformity (2n). Both average and standard deviations
increase with the increase in the S-box size, which indicate that
(as one would intuitively assume) that the difficulty of the problem
increases with the size. It is interesting to notice the quick degrade
in the average value for the 7 × 7 case (that still seems to be easy)
and 8 × 8 case that seems to significantly increase in difficulty.

Our results show that GP is able to find constructions regardless
of whether we are working on multiple S-box sizes or only a single
size. Finally, we report extremely good results where we are able
to reach the goal in every experiment. When considering APN
functions working in a single dimension, we observe interesting
results. For instance, for the 3 × 3 size, we found the solution:

multiply(add(add_one(X), trace(X)), exp(add_one(X),d))
with d = 2. This construction is producing APN function that is
bijective. What is more, exponent value 2 is not possible exponent
value for APN power functions. This means that the function we
constructed is not equivalent to APN power function, which makes
it a very interesting result.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we investigate whether it is possible to use GP to
evolve algebraic constructions for S-boxes. All our results show that
GP is consistently able to find such solutions. Still, many equivalent
solutions appear or are already known constructions. Despite that,
our experiments revealed several interesting examples that warrant
to be further studied. In future work, we plan to investigate what
happens if we try to find constructions working in multiple odd or
even dimensions only.

REFERENCES
[1] Eli Biham and Adi Shamir. 1991. Differential Cryptanalysis of DES-like Cryptosys-

tems. In Proceedings of the 10th Annual International Cryptology Conference on
Advances in Cryptology (CRYPTO ’90). Springer-Verlag, London, UK, UK, 2–21.

[2] Lilya Budaghyan, Claude Carlet, and Gregor Leander. 2009. Constructing new
APN functions from known ones. Finite Fields and Their Applications 15, 2 (2009),
150 – 159. https://doi.org/10.1016/j.ffa.2008.10.001

[3] Claude Carlet. 2010. Vectorial Boolean Functions for Cryptography. In Boolean
Models and Methods in Mathematics, Computer Science, and Engineering (1st ed.),
Yves Crama and Peter L. Hammer (Eds.). Cambridge University Press, New York,
NY, USA, 398–469.

[4] Y. Edel, G. Kyureghyan, and A. Pott. 2006. A new APN function which is not
equivalent to a power mapping. IEEE Transactions on Information Theory 52, 2
(Feb 2006), 744–747. https://doi.org/10.1109/TIT.2005.862128

[5] Lars R. Knudsen and Matthew Robshaw. 2011. The Block Cipher Companion.
Springer. I–XIV, 1–267 pages.

[6] Kaisa Nyberg. 1991. Perfect Nonlinear S-Boxes. In Advances in Cryptology -
EUROCRYPT ’91, Workshop on the Theory and Application of of Cryptographic
Techniques, Brighton, UK, April 8-11, 1991, Proceedings (Lecture Notes in Computer
Science), Vol. 547. Springer, 378–386.

[7] Stjepan Picek and Domagoj Jakobovic. 2016. Evolving Algebraic Constructions for
Designing Bent Boolean Functions. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016 (GECCO ’16). ACM, New York, NY, USA, 781–788.
https://doi.org/10.1145/2908812.2908915

[8] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. 2008. A Field
Guide to Genetic Programming. Published via http://lulu.com and freely avail-
able at http://www.gp-field-guide.org.uk. (With contributions by J. R. Koza).

396

https://doi.org/10.1016/j.ffa.2008.10.001
https://doi.org/10.1109/TIT.2005.862128
https://doi.org/10.1145/2908812.2908915

	Abstract
	1 Introduction
	2 S-boxes and Their Properties
	3 GP Approach and Results
	4 Conclusions and Future Work
	References

