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ABSTRACT
Multi-view problems generalize standard machine learning prob-

lems to situations in which data entities are described frommultiple

different perspectives, a situation that arises in many applications

due to the consideration of multiple data sources or multiple metrics

of dissimilarity between entities. Multi-view algorithms for data

clustering offer the opportunity to fully consider and integrate this

information during the clustering process, but current algorithms

are often limited to the use of two views.

Here, we describe the design of an evolutionary algorithm for the

problem of multi-view data clustering. The use of a many-objective

evolutionary algorithm addresses limitations of previous work, as

the resulting method should be capable of scaling to settings with

four or more views. We evaluate the performance of our proposed

algorithm for a set of traditional benchmark datasets, where

multiple views are derived using distinct measures of dissimilarity.

Our results demonstrate the ability of our method to effectively deal

with amany-view setting, as well as the performance boost obtained

from the integration of complementary measures of dissimilarity

for both synthetic and real-world datasets.
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1 INTRODUCTION
Several applications involve multi-view data derived from (i) the

consideration of multiple data sources or (ii) the application of

multiple dissimilarity measures between instances. In multi-view

clustering, each view captures a distinct perspective of the data and

contributes with information that is necessary to fully understand

the problem [2]. Multi-view algorithms for data clustering offer the

opportunity to fully consider and integrate this information during

the clustering process.

Here, we consider the special case of multi-view problems arising

from the consideration of multiple dissimilarity measures. Existing
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clustering algorithms require the choice of a single measure such as

the Euclidean, MED [1], or Cosine distance. The task of selecting the

best dissimilarity measure for a given dataset, or that of combining

multiple available measures, is typically addressed early on in the

data analysis pipeline and can represent a significant challenge. One

approach is to assign different weights to different measures [3, 4],

but the appropriate weights are difficult to determine without prior

knowledge regarding the types of structures present in the data

and the reliability of the information provided by these measures.

Recently, there have been some first steps toward considering

multiple measures using multiobjective clustering algorithms [5, 6],

but these approaches are currently limited to two-view data and

do not extend to problems with many (> 3) views.

2 THE PROPOSED ALGORITHM
We develop a methodology for many-view clustering that takes

advantage of recent developments in evolutionary many-objective

optimization. The framework of our algorithm kMOEA/D is

outlined in Algorithm 1, and is based on the decomposition

algorithm MOEA/D [8] with Tchebycheff approach, дte (· ). The
algorithm requires as input: the number of subproblems (NP ),
a uniform spread of NP weight vectors (W), the l dissimilarity

matrices {D1, . . . ,Dl } and the termination criterion (Gmax).

Algorithm 1: General framework of kMOEA/D

Input: NP ,W, {D1, . . . ,Dm }, Gmax

Output: population P
1 [P,B] ← Initialization(W)

2 for д← 1 to Gmax do
3 for i ← 1 to NP do
4 ui ←Reproduction(P,B(i)) /* variation oper. */

5 Ci ← Decodification(ui , wi
, {D1, . . . ,Dl })

6 fi ← Evaluation(Ci , {D1, . . . ,Dl })

7 Update zref /* reference point */

8 foreach j ∈ B(i) do
9 if дte

(
ui | wj , zref

)
≤ дte

(
zj | wj , zref

)
then

10 P(j) = ui , Fit(j) = fi
11 end
12 end
13 end
14 end

Initialization. kMOEA/D implements a centroid-based representa-

tion. The parent population P = {z1, . . . , zNP } is randomly initial-

ized, meanwhile, the neighborhoods B(i) for each i-th subproblem

are selected by assigning its T closest weight vectors.
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Reproduction Operators. The “DE/rand/1” mutation strategy and

the binomial crossover operation are used to generate offsprings [7].

Decoding of Solutions. Let mi = m1, . . . ,mK be the medoids

derived from the i-th solution zi , and wi
be the corresponding

weight vector. Then, the clustering solution Ci is obtained by

assigning each data point xp to the nearest medoid such that Ci =
argminj ∈mdws

(
xj , xp

)
, where dws(· , · ) is a weighted-sum distance

of multiple normalized distances {d1, . . . ,dl } in the direction wi
:

dws(a, b) = wi
1
d1(a, b) + . . . +wi

ldl (a, b) . (1)

Objective Functions. The intra-cluster variance has been selected

as the optimization criterion. Let Ci be a clustering solution

and let Dj be a specific dissimilarity matrix, j ∈ {1, . . . , l}.
Then, the value for the j-th objective of the i-th subproblem is

computed as fj (Ci ) =
∑
ck ∈C

∑
a,b∈ck dj (a, b)

2
, where dj (a, b) is

the dissimilarity between a and b as defined in Dj .

3 EXPERIMENTAL SETUP AND RESULTS
We test our algorithm for multi- and many-views settings, using

various combinations of four distance functions.

Datasets. A total of 15 datasets are considered for this study: (i) nine

synthetic datasets having different sizes, degrees of overlap, and

clusters having different shapes; and (ii) six real-world datasets,

Iris, Wine, Breast, Thyroid, Glass and Ecoli.

Parameter Settings. The settings adopted in our experiments for

2-objective instances are: NP = 100,Gmax = 500, the crossover rate

is Cr = 0.9, the mutation factor is F = 0.5, and the neighborhood

size is T = 10. For 3- and 4-objective instances, the population

size is set to NP = 150 and NP = 165, respectively. kDE used the

same settings as kMOEA/D in the case of 2-objective instances.

A total of 31 independent executions were performed for each

dataset. Finally, the Adjusted Rand Index (ARI) is used to assess

the clustering performance. The best solution in terms of ARI was

selected from the set of trade-off solutions produced by kMOEA/D.

Clustering Performance. Figure 1 summarizes the results of our

experiments
1
. We observed that the single-objective algorithms

obtained good results on datasets that comply with the assump-

tions made by the particular dissimilarity measure employed. On

the other hand, kMOEA/D achieved a better performance for both

synthetic and real-world datasets when simultaneously considering

distinct dissimilarity measures. In general, we observed that the

increase in the number of distinct dissimilarity measures systemat-

ically translates into an increase in the clustering performance.

4 CONCLUSIONS
We presented a many-objective evolutionary algorithm for clus-

tering capable of scaling the number of views: kMOEA/D. The

proposed approach outperformed some traditional single-objective

clustering techniques across a diverse range of datasets, where

multiple views were derived using distinct dissimilarity measures.

Additionally, we investigated the performance of kMOEA/D when

increasing the number of views to three and four views. Our exper-

iments lead to the conclusion that kMOEA/D performs robustly in

1
Detailed results can be found in the supplementary material.
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Figure 1: ARI values (best of each run) obtained for
the (a) synthetic and (b) real-world datasets, using differ-
ent dissimilarity measures: Euclidean (▲), MED based on Eu-
clidean (△), Cosine (▼) and MED based on Cosine (▽). The
square symbol, □, indicates no statistically significant differ-
ence between groups compared to the best one, ■.

such a many-view setting and continues to extract value from the

addition of complementary dissimilarity data. Our implementation

of many-view clustering generates a set of trade-off solutions. An

important challenge for future work is the automatic, unsupervised

selection of the best clustering solution from these sets.
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