Many-View Clustering - An Illustration using Multiple Dissimilarity Measures

Supplementary Material

Adán José-García University of Manchester adan.jose-garcia@manchester.ac.uk

Wilfrido Gómez-Flores CINVESTAV-IPN wgomez@tamps.cinvestav.mx

1 TABLES OF RESULTS

This appendix includes tables complementing the results of the experiments presented in the Section 4. The description of these synthetic and real-world datasets in terms of the number of patterns (N), number of dimensions (D) and number of clusters (K) are summarized in Table 1. The cluster structures of the synthetic datasets are illustrated in Figure 1. The Table 2 details the results of the ARI measure for the different clustering algorithms studied in this paper. The Table 3 presents the results in terms of the ARI measure for the kMOEA/D algorithm when the increasing the number of objectives (*i.e.*, views derived from the application of different dissimilarity measures).

Table 1: Description of the synthetic and real-world datasets.

Dataset	Ν	D	K	Clusters properties		
Orange	400	2	2	Well-separated		
Data_4_3	400	3	4	Well-separated		
Lsun	400	2	3	Well-separated		
Size5	1000	2	4	Overlapping		
Data_5_2	250	2	5	Overlapping		
Data_9_2	900	2	9	Overlapping		
Inside	600	2	2	Nonlinearly separable		
Atom	800	3	2	Nonlinearly separable		
Spirals	1000	2	2	Nonlinearly separable		
Iris	150	4	3	Overlapping classes		
Wine	178	13	3	Overlapping classes		
BreastCW	676	9	2	Overlapping classes		
Thyroid	215	5	3	Overlapping classes and noise		
Glass2	214	9	2	Overlapping classes and noise		
Ecoli	336	7	8	Overlapping classes and noise		

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

GECCO '19 Companion, July 13-17, 2019, Prague, Czech Republic

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07...\$15.00

https://doi.org/10.1145/3319619.3323365

Julia Handl University of Manchester julia.handl@manchester.ac.uk

Mario Garza-Fabre CINVESTAV-IPN mgarza@tamps.cinvestav.mx

Figure 1: This figure illustrates the diversity of properties covered by our collection of test datasets: datasets (a) Orange, (b) Data_4_2, and (c) Lsun present well-separated clusters; datasets (d) Size5, (e) Data_5_2, and (f) Data_9_2 exhibit overlapping clusters; and datasets (g) Inside, (h) Atom, and (i) Spirals consist of nonlinearly separable clusters.

Table 2: ARI results obtained by different algorithms (mean values of 31 runs). The best average ARI value for each dataset has been shaded and bolded. The statistically best ($\alpha = 0.05$) results are highlighted in bold face. The Kruskal–Wallis test with Bonferroni correction was applied to compare the algorithms. Dissimilarity measures: Euclidean distance (\blacktriangle), MED distance based on Euclidean (\triangle), Cosine distance (\blacktriangledown) MED distance based on cosine (\bigtriangledown).

Dataset	k-means			Single-Link		kDE			kMOEA/D			
	•	Δ	•	•	Δ	▼	•	Δ	•		$\blacktriangledown \bigtriangledown$	▲▼
Orange	1.000 (0.00)	1.000 (0.00)	0.389 (0.00)	1.000	1.000	0.000	1.000 (0.00)	1.000 (0.00)	0.389 (0.00)	1.000 (0.00)	0.428 (0.00)	1.000 (0.00)
Data_4_3	1.000 (0.00)	1.000 (0.00)	0.112 (0.00)	1.000	1.000	0.002	1.000 (0.00)	1.000 (0.00)	0.110 (0.01)	1.000 (0.00)	0.109 (0.04)	1.000 (0.00)
Lsun	0.436 (0.00)	1.000 (0.00)	0.535 (0.00)	1.000	1.000	0.391	0.463 (0.00)	1.000 (0.00)	0.546 (0.00)	1.000 (0.00)	0.552 (0.00)	0.914 (0.01)
Size5	0.920 (0.00)	0.739 (0.01)	0.332 (0.00)	0.002	0.015	0.032	0.924 (0.00)	0.711 (0.00)	0.308 (0.00)	0.967 (0.00)	0.779 (0.00)	0.973 (0.00)
Data_5_2	0.888 (0.01)	0.750 (0.02)	0.419 (0.01)	0.189	0.394	0.041	0.841 (0.01)	0.742 (0.01)	0.415 (0.00)	0.943 (0.01)	0.415 (0.01)	0.971 (0.00)
Data_9_2	0.831 (0.00)	0.506 (0.03)	0.293 (0.00)	0.000	0.000	0.010	0.753 (0.04)	0.512 (0.03)	0.294 (0.00)	0.844 (0.00)	0.315 (0.01)	0.829 (0.01)
Inside	0.001 (0.00)	1.000 (0.00)	0.016 (0.00)	1.000	1.000	0.000	0.001 (0.00)	1.000 (0.00)	0.002 (0.00)	1.000 (0.00)	0.144 (0.00)	0.003 (0.00)
Atom	0.184 (0.01)	1.000 (0.00)	0.136 (0.01)	1.000	1.000	0.000	0.097 (0.00)	1.000 (0.00)	0.149 (0.01)	1.000 (0.00)	0.196 (0.00)	0.197 (0.02)
Spirals	0.033 (0.00)	1.000 (0.00)	0.026 (0.00)	1.000	1.000	0.006	0.034 (0.00)	1.000 (0.00)	0.025 (0.00)	1.000 (0.00)	0.043 (0.00)	0.034 (0.00)
	0.59 (0.40)	0.890 (0.17)	0.250 (0.18)	0.690	0.710	0.050	0.570 (0.40)	0.890 (0.17)	0.250 (0.18)	0.970 (0.05)	0.330 (0.22)	0.660 (0.42)
0.66 (0.42)	0.730 (0.00)	0.717 (0.03)	0.904 (0.00)	0.561	0.564	0.566	0.746 (0.00)	0.755 (0.05)	0.886 (0.00)	0.905 (0.00)	0.904 (0.00)	0.922 (0.00)
Wine	0.915 (0.00)	0.550 (0.06)	0.808 (0.00)	0.004	0.006	0.004	0.756 (0.01)	0.711 (0.15)	0.706 (0.01)	0.786 (0.05)	0.735 (0.09)	0.770 (0.08)
BreastCW	0.861 (0.00)	0.747 (0.13)	0.856 (0.00)	0.007	0.003	0.003	0.856 (0.00)	0.804 (0.11)	0.867 (0.00)	0.833 (0.01)	0.881 (0.00)	0.875 (0.00)
Thyroid	0.718 (0.00)	0.590 (0.14)	0.186 (0.00)	0.430	0.232	0.013	0.703 (0.00)	0.220 (0.00)	0.137 (0.00)	0.858 (0.02)	0.199 (0.04)	0.829 (0.05)
Glass2	0.634 (0.02)	0.455 (0.05)	0.312 (0.00)	0.020	0.034	0.041	0.587 (0.00)	0.569 (0.00)	0.205 (0.03)	0.570 (0.01)	0.780 (0.05)	0.642 (0.12)
Ecoli	0.417 (0.03)	0.406 (0.04)	0.369 (0.02)	0.038	0.041	0.376	0.412 (0.03)	0.398 (0.05)	0.404 (0.02)	0.531 (0.05)	0.699 (0.04)	0.445 (0.03)
	0.710 (0.16)	0.580 (0.15)	0.570 (0.29)	0.170	0.140	0.160	0.680 (0.14)	0.580 (0.22)	0.530 (0.30)	0.750 (0.15)	0.700 (0.24)	0.750 (0.17)

Table 3: ARI results obtained by kMOEA/D when varying the number of objectives $\{2, 3, 4\}$. The best average ARI value for each dataset has been shaded and bolded. The statistically best ($\alpha = 0.05$) results are highlighted in bold face. The Kruskal–Wallis test with Bonferroni correction was applied to compare the algorithms. Dissimilarity measures: Euclidean distance (\blacktriangle), MED distance based on Euclidean (\triangle), Cosine distance (\blacktriangledown) MED distance based on cosine (\triangledown).

Dataset		2-objectives	3-objectives	4-objectives		
		$\blacktriangledown \bigtriangledown$	▲▼	$\blacktriangle \land \blacktriangledown$	$\blacksquare \blacktriangledown \land \bigtriangledown$	
Orange	1.000 (0.00)	0.428 (0.00)	1.000 (0.00)	1.000 (0.00)	1.000 (0.00)	
Data_4_3	1.000 (0.00)	0.109 (0.04)	1.000 (0.00)	1.000 (0.00)	1.000 (0.00)	
Lsun	1.000 (0.00)	0.552 (0.00)	0.914 (0.01)	1.000 (0.00)	1.000 (0.00)	
Size5	0.967 (0.00)	0.779 (0.00)	0.973 (0.00)	0.976 (0.00)	0.973 (0.00)	
Data_5_2	0.943 (0.01)	0.415 (0.01)	0.971 (0.00)	0.970 (0.00)	0.961 (0.01)	
Data_9_2	0.844 (0.00)	0.315 (0.01)	0.829 (0.01)	0.844 (0.01)	0.842 (0.01)	
Inside	1.000 (0.00)	0.144 (0.00)	0.003 (0.00)	1.000 (0.00)	1.000 (0.00)	
Atom	1.000 (0.00)	0.196 (0.00)	0.197 (0.02)	1.000 (0.00)	1.000 (0.00)	
Spirals	1.000 (0.00)	0.043 (0.00)	0.034 (0.00)	1.000 (0.00)	1.000 (0.00)	
	0.973 (0.05)	0.331 (0.22)	0.658 (0.42)	0.977 (0.05)	0.975 (0.05)	
Iris	0.905 (0.00)	0.904 (0.00)	0.922 (0.00)	0.941 (0.00)	0.928 (0.01)	
Wine	0.786 (0.05)	0.735 (0.09)	0.770 (0.08)	0.831 (0.03)	0.853 (0.01)	
BreastCW	0.833 (0.01)	0.881 (0.00)	0.875 (0.00)	0.879 (0.00)	0.889 (0.00)	
Thyroid	0.858 (0.02)	0.199 (0.04)	0.829 (0.05)	0.896 (0.01)	0.884 (0.01)	
Glass2	0.570 (0.01)	0.780 (0.05)	0.642 (0.12)	0.748 (0.02)	0.761 (0.01)	
Ecoli	0.531 (0.05)	0.699 (0.04)	0.445 (0.03)	0.516 (0.01)	0.753 (0.01)	
	0.747 (0.15)	0.700 (0.24)	0.743 (0.17)	0.802 (0.14)	0.845 (0.07)	