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ABSTRACT
In machine learning, transfer learning is concerned with utilising
prior knowledge as a way to improve the process of training a new
model in a different, but related, domain. Transfer learning has
been shown to be beneficial across a large set of problems. One of
the main questions any transfer learning approach must address is
“What to transfer?”. This paper proposes a new transfer learning
method in genetic programming (GP) to improve solving symbolic
regression problems by extracting all potentially good and unique
building blocks from a source problem. The proposed method is
compared against standard GP and a state-of-the-art GP method
on ten regression datasets. The experimental results show that the
proposed method has achieved significantly better or comparable
performance to that of the competitive methods. Furthermore, the
proposed method shows better initial population and convergence
compared to the other methods.
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1 INTRODUCTION
With enough data and time, machine learning can be used to con-
struct models that are capable of solving a broad range of problems.
However, in practice, often there are limitations on the amount
of available data and time. This could lead to the resulting mod-
els performing poorly. To address this problem, the knowledge of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3322072

previously trained models can be used, which has an impact on
reducing the amount of data and time required. The final accuracy
of the new models could also be improved. This process of trans-
ferring existing knowledge in some manner from a source domain
to a target domain is called transfer learning [5]. There are three
main questions that all transfer learning techniques must address
— “What to transfer?”, “How to transfer?”, and “When to transfer?”
[5]. All of these questions are still topics of active research. Several
transfer learning techniques have been proposed to address these
questions, which have proven to be useful in a broad range of fields
such as binary problems [1] and image classification [2].

Genetic programming (GP) is an evolutionary computation tech-
nique that uses genetic operators to generate and optimise programs
to solve a specific task. Typically, the tree representation is used
in GP to represent an individual (solution), which makes this tech-
nique very flexible and allows GP to be largely extendable since
more functions can always be added. Furthermore, the behaviour
of the resulting model from GP can be interpreted.

Most of the transfer learning techniques for GP involve transfer-
ring (sub-)trees from a subset of individuals. These transferrals can
be used to initialise the initial population for the target problem
[3], or as a constant influence by using them throughout the evolu-
tionary process [4]. The three main questions of transfer learning
can be made more specific in this case. The important questions be-
come: “Which individuals to consider?”, “Which (sub-)trees should
be transferred?”, and “How are the transferrals used?”.

O’Neill et al. [4] proposed a transfer learning technique for GP,
which considers the similarities of different solutions evolved on
different problems. The algorithm selects the best solutions, ex-
tracts all of the common sub-trees between them, and uses them
as building blocks in the target problem. The way these blocks are
acquired and used was an improvement over the previous methods.
However, despite the improvements demonstrated, there are still
some limitations, such as the requirement of having two separate
GP runs. Hence, such solution cn be very expensive. Furthermore,
two separate source problems are needed to generate an effective
set of building blocks, which might not always be available.

This research aims to further explore and proposes a novel build-
ing blocks selection method in GP. The effectiveness of the pro-
posed method to tackle regression problems will be investigated
and compared to standard GP and a state-of-the-art method.

2 THE PROPOSED METHOD
The much less restrictive selection process of the building blocks
in the proposed method, Primitives from Sub-trees (PST), represents
the main difference between this method and existing ones.
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Table 1: Themean squared error on ten regression problems.

Problem STDGP CSRP (S0) CSRP (S1) PST (S0) PST (S1)

Trig-1 2.12E+18 3.69 1.87 0.9 (+++) 2.44 (++=)
Trig-2 1.03E+14 49.63 3.87 2.26 (+++) 4.01 (++=)
Trig-3 7.34E+18 7.19 5.52 2.68 (+++) 2.33 (+++)
Trig-4 1.81 0.93 0.93 1.99 (= - -) 1.64 (= - -)
Trig-5 4.11 1.19 1.03 2.39 (+ - -) 1.68 (+ - -)

Poly-1 1.41E+05 622 48.24 31.18 (++=) 4.14E+05 (- = -)
Poly-2 48.63 47.93 7.72 9.91 (++=) 8.72E+04 (- = -)
Poly-3 182.71 158 47.61 39.33 (++=) 8.31E+05 (= - -)
Poly-4 1.13E+06 1.15E+06 104.02 529.1 (=+=) 1.26E+04 (= - -)
Poly-5 1.52E+07 4.31E+10 3.34E+16 2.59E+03 (==+) 1.37E+07 (= - =)

Building blocks are collected from the best solution ot a source
problem. Each sub-tree of the best solution is a potential building
block. If the potential building block has a depth greater than some
threshold (in this case 4), it will be discarded to prevent the trans-
ferred building block from being too large. The larger a building
block is, the more expensive it is to be evaluated. The potential
building blocks are then filtered for uniqueness (if two blocks output
the same values for the same inputs, then the larger block is dis-
carded). After this filtering, all of the remaining building blocks are
converted into functions by replacing their leaf nodes with inputs,
and then transferred to the function set of the target problem.

The building blocks are used in the sameway that other functions
in the function set are. This means that when generating a new
population, or creating a tree to be used in mutation, building
blocks have the potential to be involved. Furthermore, the terminal
set, function set, parameter settings, and fitness function (mean
absolute error) are all the same as that in [4].

3 EXPERIMENT DESIGN AND RESULTS
Both standard GP (STDGP), and common sub-trees from related
problems (CSRP) [4] will be used as benchmarks in this research. It
should be noted that in this case both the source problems required
by CSRP will be set to the same problem, i.e., only one problem,
during the experiments. For each source problem, the building
blocks are extracted and then applied to the target problem inde-
pendently 30 times. The average performance of these 30 runs is
calculated. The entire process is then repeated 10 times, and the
average performance is reported and presented in Table 1.

Ten regression problems are used to assess the goodness of the
proposed method that are five ‘polynomial‘ (Poly) and five ’trigono-
metric’ (Trig). The details of theses datasets can be found in [4].

For each problem, there are two different sources, which repre-
sent the source problem used for training. In Table 1, these two
sources are indicated by ‘S0’ and ‘S1’, respectively.

The results show that the proposed method is comparable to
CSRP in terms of the mean squared errors, and often outperforms
standard GP. A Wilcoxon signed-rank test is performed in order
to determine statistical significance. The symbols ‘+’ and ‘-’ are,
respectively, used if PST has significantly better and worse perfor-
mance than the other methods; otherwise, an ‘=’ symbol is used.
The three symbols indicate how the proposed method performed
compared to STDGP, CSRP (S0) and CSRP (S1), respectively.

In many cases where there was a significant difference between
CSRP (S0) and CSRP (S1), the equivalent deviation between PST
(S0) and PST (S1) is not present. For example, the testing error on
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Figure 1: The PST convergence on (a) Poly-1, and (b) Trig-1.

Poly-2 had a relatively large difference between the two runs of
the CSRP method, but the equivalent deviation cannot be seen for
the PST method. However, the results show that both PST and
CSRP are sensitive to the source problem, which can be observed
by comparing the results obtained from the two different sources.

The proposed method often had the best starting performance,
which shows that the transferred building blocks are immediately
useful for the target problem. The training error convergence for
Poly-1 and Trig-1 can be seen in Figure 1. Only two of the 10 figures
are shown here, however, a similar pattern was noted for the other
figures. In both the trigonometric and the polynomial datasets, the
proposed method often had a better convergence. The convergence
plots for the trigonometric dataset were slightly different. The
starting points were much closer, but the convergence of PST still
appeared to be better than the other methods in most cases.

4 CONCLUSIONS
This research aimed to develop a new transfer learning technique
for GP. The proposed method has demonstrated to be capable of
transferring useful information from a source problem to a target
problem. It takes information in the form of building blocks, which
are functions generated by all the potentially effective sub-trees
of a solution, and then filters them. The experimental results on
ten symbolic regression problems show that the information trans-
ferred, and the way they were used, by the proposed method can
be useful compared to standard GP and a state-of-the-art method.
Moreover, the proposed method shows better converge compared
to the other methods.

In the future, the usage of several individuals for building block
retrieval will be investigated.
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