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ABSTRACT
On the XCS classifier system, an ideal assumption in the
latest XCS learning theory means that it is impossible for
XCS to distinguish accurate rules from any other rules with
100% success rate in practical use. This paper presents a
preliminary work to remove this assumption. Furthermore,
it reveals a dilemma in setting a crucial XCS parameter.
That is, to guarantee 100% success rate, the learning rate
should be greater than 0.5. However, a rule fitness updated
with such a high learning rate would not converge to its true
value so rule discovery would not act properly.

CCS Concepts
•Computing methodologies → Rule learning; Classi-
fication and regression trees;
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1. INTRODUCTION
On evolutionary rule-based learning [?, ?], there lacks of

modern theoretical progress [?]. For the most popular ver-
sion i.e. XCS-based systems (e.g. [?, ?, ?, ?, ?]), the latest
XCS learning theory [?] in 2017 makes progress but is still
limited. While this theory is designed for classification, it
derives an optimum XCS parameter setting for the learning
rate β that guarantees XCS distinguishes an accurate rule
from any other inaccurate rules under certain assumptions.
Besides, it reveals that β can be set to a smaller value than
its standard value 0.2 [?] for high dimensional problems [?].

However, the XCS learning theory cannot guarantee that
XCS distinguishes accurate rules from the inaccurate ones
with a 100% success rate, due to an ideal assumption. For
classification, a classification accuracy PC of a rule can be a
criteria for rule quality. The XCS learning scheme estimates
an prediction error εn while sampling rewards, as an alter-
native to PC . Then, XCS identifies a rule as accurate if its
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εn is smaller than a threshold ε0, otherwise inaccurate. So,
we should satisfy that the upper and lower bounds of εn of
truly accurate and inaccurate rules are respectively smaller
and larger than ε0. However, this theory assumes approx-
imated lower/upper bounds given by the true value of PC

to sidestep the uncertainty of reward sampling. Hence, due
to an approximation gap against reality, an inaccurate rule
may have εn smaller than its approximation and so ε0.

This paper presents a preliminary work of a revised XCS
learning theory that guarantees XCS perfectly distinguishes
the accurate rules from the inaccurate rules. We here do
not use any ideal assumption using the true value of PC

in calculating the lower/upper bounds of the prediction er-
ror. Instead, we derive equations of the actual lower/upper
bounds while handling the uncertainty of reward sampling.
Besides, we reveal that, there is a dilemma of when boosting
both the learning capacity and the search capacity together.

2. REVISED THEORY
Due to the limit of space, we here only show a preliminary

result of theoretical conclusion. Besides, in this paper, we
use the same matematical terminology as in [?, ?].

Maximum prediction error of accurate rules.
Since the completely accurate rule cl(PC

∗) should receive
only a constant value of received reward during the nmin

update times, each rk of the actual prediction given the es-
tiamted equation for εnmin(PC

∗
min) in [?] does not depend on

the reward history. As a result, max εnmin(PC
∗) is equivalent

to max ε̂nmin(PC
∗) which have been derived in [?];

max εnmin(PC
∗)=rmax(1−β)nmin +rmaxnminβ(1−β)nmin−1. (1)

Hence, this is the actual upper bound of prediction error for
the accurate rules.

Minimum prediction error of inaccurate rules.
As a preliminary work, we here only consider an inaccu-

rate rule cl(PC
′) having a true classification accuracy 0.5 ≤

PC
′ < PC

′
max. Since we can consider possible combinations

of rmin and rmax during nmin update times, a problem is now
to specify the reward history that minimizes the actual pre-
diction error. Then, such a reward history is given such that
the actual prediction can be maximized for PC

′ ≥ 0.5.
Let R′max = [r1, · · · , rnmin ] be the latest nmin reward his-

tory that maximizes the prediction. We can identify R′max =
[rmin, rmax, · · · , rmax] where the oldest reward r1 is rmin and
other rewards are rmax. Consequently, PC

′ calculated from
R′max is corresponding to the upper bound of PC

′ i.e. PC
′
max.
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Figure 1: The boundary value of learning rate β∗

given by (??); β∗ (red line) converges near to 0.5.

Then, εnmin(PC
′
max) calculated from R′max can be;

εnmin(PC
′
max) = (1− β)nminεI + β(1− β)nmin−1|rmin − pI |

+

nmin∑
k=2

β(1− β)nmin−k|rmax − pk−1(PC
′
max)|

= (1− β)nminεI − (nmin − 2)β(1− β)nmin−1pI

+ (nmin − 1)β(1− β)nmin−2rmax. (2)

Let us further minimize εnmin(PC
′
max) in terms of the vari-

ables pI and εI . Since εnmin(PC
′
max), (??) can be monoton-

ically decreasing and increasing for pI and εI respectively,
and so we can determine pI = rmax and εI = 0. Hence, the
minimum value can be;

min εnmin(PC
′) = β(1− β)nmin−2 [1 + (nmin − 2)β] rmax. (3)

Hence, for 0.5 ≤ PC
′ < PC

′
max, all possible values of εn(PC

′)
are always larger or equal to the actual lower bound given
by (??).

Theoretical parameter settings.
Finally, we determine the theoretical parameter setting of

ε0 and β from a boundary condition. The original learning
theory employs the boundary condition max ε̂nmin−1(PC

∗) =
min ε̂nmin−1(PC

′) i.e. at one update time before nmin accord-
ing to a fact that min ε̂n(PC

′) i.e. the approximated lower
bound can be monotonically increasing for n. However,
in practice, we can now see min εnmin(PC

′), i.e. the actual
lower bound is monotonically decreasing for nmin and so
we should not use the original boundary condition. Ac-
cordingly, we directly solve the following inequality for β;
max εnmin(PC

∗) < min εnmin(PC
′). Then, this expression can

be a quadratic inequality for β and so β must be larger than
a boundary value β∗ given by;

β∗ =
3− nmin −

√
n2

min + 2nmin − 3

6− 4nmin

. (4)

Hence, when we set β > β∗ and ε0 = min εnmin(PC
′) cal-

culated from β, max εnmin(PC
∗) is always smaller than ε0.

Therefore, our goal can be satisfied for any rules which have
been updated more than or equal to nmin update times. In
other words, under the definition that PC is calculated from
the latest nmin rewards, XCS with our theoretical parameter
settings does not misdistinguish inaccurate rules as accurate.

3. DILEMMA
As explained in [?], the value of β determines whether

the prediction error converges to its true value. The exist-
ing learning theory recommends β is set to as small value
as possible. However, our theoretical result reveals that β

should be set to an exceptionally high value. Specifically, as
shown in Fig.??, β∗ is always larger than 0.5 for any val-
ues of nmin; and β should be larger than β∗. Consequently,
we cannot expect that the rule-fitness stably converges to
its true value as well as the prediction error. Hence, the
rule-fitness may not reliably identify the rules having a high
classification accuracy. Consequently, GA would suffer to
act with a proper evolutionary search. Thus, XCS would
lose its search ability to find cl(PC

∗) when having a learning
capacity to perfectly distinguish cl(PC

∗) from cl(PC
′).

4. CONCLUSION
This paper presented a preliminary work of to achieive

that guarantees XCS distinguishes the accurate rules from
the inaccurate rules with 100% success rate. Moreover, our
theoretical result reveals a dilemma; XCS would lose search
capacity to find cl(PC

∗) when having a learning capacity to
perfectly distinguish the cl(PC

∗) from the cl(PC
′). In fur-

ture work, we should exntend our result to cover all poissible
inaccurate rules, i.e., PC

′ ≤ 0.5 as well as PC
′ ≥ 0.5.
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