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ABSTRACT 
The Quadratic Assignment Problem (QAP) is a classical NP-

hard combinatorial optimization problem. In the paper will be 

presented suitable metaheuristic algorithm HC12. The algorithm 

is population based and uses a massive parallel search of the 

binary space which represents the solution space of the QAP. 

The presented implementation of the metaheuristic HC12 

utilizes the latest GPU CUDA platform. The results are 

presented on standard test problems from the QAP library.* 
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1 INTRODUCTION 

The NP-hard quadratic assignment problem (QAP), in its 

Koopmans and Beckmann form [1], can be described as follows: 

The problem is structured on a complete directed graph with 𝑛 

nodes and 𝑛2 arcs, together with a set of 𝑛 facilities, that have to 

be assigned to the nodes. The indices 𝑖, 𝑗  correspond to the 

nodes, the indices 𝑓, 𝑔 correspond to the facilities, 𝑏𝑖,𝑗 ≥ 0 is a 
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given (directed) distance from node 𝑖  to node 𝑗 , 𝑎𝑓,𝑔 ≥ 0  is 

a flow from facility 𝑓 to facility 𝑔, and 𝑐𝑖,𝑗 is a cost of assigning 

facility 𝑓 to node 𝑖. By using binary variables 𝑥𝑖,𝑓 = 1 if facility 

𝑓 is assigned to node 𝑖, and 0 otherwise, the QAP can be stated 

as the following 0-1 optimization problem: 

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑎𝑓,𝑔

𝑔𝑗𝑓𝑖

𝑏𝑖,𝑗𝑥𝑖,𝑓𝑥𝑗,𝑔 + ∑ ∑ 𝑐𝑖,𝑓

𝑓𝑖

𝑥𝑖,𝑓 (1) 

𝑠. 𝑡. ∑ 𝑥𝑖,𝑓

𝑖

= 1,   ∑ 𝑥𝑖,𝑓

𝑓

= 1, ∀𝑓,   ∀𝑖 (2) 

 𝑥𝑖,𝑓 ∈ {0,1}, ∀𝑖, ∀𝑓. (3) 

Several directions for enriching the QAP formulation have been 

proposed – among the most notable of these are the multi-

objective formulation [2] and stochastic formulation [3]. 

2 ALGORITHM HC12 

The binary HC12 algorithm [4] is a stochastic heuristic 

searching algorithm which belongs to the class of pseudo global 

search methods. The basic step of the algorithm is a generation 

of a neighborhood of the current solution, which serves as a base 

for the new population. The method of generating the 

neighborhood is the pivotal characteristic of HC12. The 

paradigm of the algorithm is the search of the optimal solution 

in the binary (Hamming) space, that encodes the solution. In this 

context, it is a parallel approach to genetic algorithms, where the 

solution is encoded as a binary vector. The best individual of the 

𝑖 − th generation (or iteration) is chosen as the base for the 

following (𝑖 + 1) generation. The approach is depicted in Fig. 1. 

3 RESULTS AND DISCUSSION 

The HC12 algorithm is extremely suitable for parallel 

implementation. In the presented experiments, it was 

implemented for HPC computations on NVIDIA RTX 2080 

(8GB). Even the larger memory requirements of the QAP 

problems, not more than 6GB were used. The implementation 

searches for the best solution in multiple runs (restarts of the 

algorithm). The effectivity of the algorithm (in regard to the 

number of found optimal solutions) can be determined as a 

success rate (the ration of runs that ended in an optimal 

solution). 
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Figure 1: The scheme of HC12 iterations. 

 

A rather interesting insight is provided by the dependence of the 

number of used swaps on the number of found optimal 

solutions. More swaps also result in a higher computation time. 

There appear to be “optimal” number of swaps for the given 

problem (the number of swaps that results in the most successful 

runs). 

 

 
Figure 2: An influence of swap operator to convergence 

features of “had20” test problem. 

The computational comparison of HC12 with other state-of-the-

art metaheuristics is done on the standard test problems from the 
QAPLIB library [5].  

The selected metaheuristics are the hybrid teaching-learning 

optimization implemented on a cluster [6], the parallel 

implementation of hybrid algorithms [7,8], and the bee 

algorithm implemented on a CUDA platform [9]. The results of 
the computation and the comparison are reported in Table 1.  

Although the running times of the HC12 algorithm are 

extremely fast (compare to the other heuristics), the robustness 

of the resulting solutions is still rather low and requires 
additional research and tuning. 
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Table 1: Comparison with other results 

* success: The effectivity of the algorithm (in regard to the number of found optimal solutions) is determined as ratio of number of optimal 

solutions to number of algorithms runs. 

problem instance 
optimal 

solution 

HC12 (GPU implementation) [6] [7] [8] [9] 

swaps success* time [s] APD time APD time APD time APD 

esc16a 68 62 1 0.0014 0 6 0 151.8 0 702 0 

esc32a 130 52 0.001 5.9462 0 72 - - - - 10.77 

had16 3720 64 0.348 0.0288 0 6 0 149.4 0 594 0 

had18 5358 64 0.123 0.1476 0 12 0 183.6 0 618 - 

had20 6922 62 0.067 0.3072 0 18 0 223.8 0 600 - 

rou12 235528 60 0.116 0.0338 0 6 0 87.6 0 90 - 

rou15 354210 50 0.02 0.2378 0 6 0 133.8 0 600 - 

rou20 725522 44 0.001 8.4109 0 18 - - - - 0.25 
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