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ABSTRACT
Lexicase selection has been proven highly successful for finding
effective solutions to problems in genetic programming, especially
for test-based problems where there are many distinct test cases
that must all be passed. However, lexicase (as with most selection
schemes) requires all prospective solutions to be evaluated against
most test cases each generation, which can be computationally ex-
pensive. Here, we propose reducing the number of per-generation
evaluations required by applying random subsampling: using a sub-
set of test cases each generation (down-sampling) or by assigning
test cases to subgroups of the population (cohort assignment). Tests
are randomly reassigned each generation, and candidate solutions
are only ever evaluated on test cases that they are assigned to,
radically reducing the total number of evaluations needed while
ensuring that each lineage eventually encounters all test cases. We
tested these lexicase variants on five different program synthesis
problems, across a range of down-sampling levels and cohort sizes.
We demonstrate that these simple techniques to reduce the number
of per-generation evaluations in lexicase can substantially improve
overall performance for equivalent computational effort.
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1 INTRODUCTION
We often apply evolutionary computation to test-based problems
where the quality of a candidate solution is assessed by evaluating
it on a large set of test cases. For such problems, we must select
parents (i.e., genetic source material) for each generation based
on how well individuals solve each test case. In many test-based
problems, the space of possible test cases is either infinite or so
large that it is not computationally feasible to evaluate a candidate
solution on every possible test case. In the absence of extensive
domain knowledge, it can be challenging to find an optimal test set
size. Too small, and we risk overfitting. Too large, and the demand
on computational resources will bring adaptive evolution to a crawl.

Lexicase selection is a more recent technique developed for ge-
netic programming (GP) that has been demonstrated to be particu-
larly effective for solving challenging test-based problems [8, 11, 13].
The lexicase algorithm chooses each parent for the next generation
by sequentially applying test cases, in a random order. Only the
best performers on each test case are kept, until a single individ-
ual is identified. This sequential filtering approach is a departure
from traditional parent-selection methods that calculate an abso-
lute fitness metric by summing an individual’s performance across
all test cases. Because lexicase changes the ordering of test cases
for every parent-selection event, individuals that perform well on
different subsets of test cases can co-exist. This dynamic allows
lexicase selection to maintain specialists on tests that the majority
of the population fail, preserving potentially important genetic ma-
terial [2, 6] and thus searching for a perfect solution from many
directions at once.

The drawback of lexicase (and many other test-based selection
schemes) is that assessing candidate solutions on a large set of test
cases can be computationally expensive, especially if individual
evaluations are costly. A simple speed-up might seem to be cutting
down the number of evaluations by limiting the number of suc-
cessive filtering steps taken during each lexicase selection event,
shifting to a random selection if multiple solutions are still available
(e.g., truncated lexicase [14]). However, in practice, each candidate
solution must still be evaluated on most test cases every generation.

We could trivially decrease the number of evaluations per gen-
eration by statically reducing the total number of test cases used
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during evolutionary search. For example, a 50% reduction in test
cases would allow us to run our search for about twice as many
generations. However, simply reducing the total number of tests is
more likely to result in prospective solutions overfitting the reduced
test set. Reducing computational effort on test-based problems is a
long-standing endeavour for GP [4]. Many techniques have been
proposed that dynamically subsample the set of tests (from a large
pool) used for candidate solution assessment and selection (see
[9, 11] for recent reviews). Subsampling techniques have been em-
ployed to reduce computational effort in GP [1, 4] and to improve
the generalizability of evolved programs [5, 11]. Can we apply
test-case subsampling techniques to lexicase selection?

Here, we examine two lexicase selection variants that leverage
random subsampling to reduce the number of evaluations per gen-
eration: down-sampled lexicase and cohort lexicase. Down-sampled
lexicase selects parents based on a random subset of test cases
each generation, guaranteeing that individuals are only evaluated
against test cases in the subset. Cohort lexicase uses all test cases
each generation, but divides both tests and individuals into cohorts,
ensuring that each individual is evaluated against only a subset of
tests. By reshuffling which test cases are experienced every genera-
tion, lineages will eventually encounter all test cases. We compare
the results of different configurations of down-sampled and cohort
lexicase across five program synthesis problems. Additionally, we
compare the performance of our proposed lexicase variants to that
of standard lexicase with a reduced number of total tests.

2 LEXICASE SELECTION
Lexicase selection is a method for choosing a candidate solution
from a population to use as a parent (i.e., to provide genetic source
material for a new individual in the next generation). Each such par-
ent is selected individually, with replacement, such that individuals
may be chosen multiple times. In lexicase, a large number of test
cases are used as criteria for evaluation. Unlike many traditional
parent-selection methods, lexicase does not aggregate performance
across test cases to calculate a single fitness score. Instead, each time
a parent is needed, test cases are successively applied in a random
order, keeping only the most fit candidates on each. This process
continues until the population is filtered down to either a single
candidate or a set of equivalent candidates (at which point one
is selected randomly). Because the ordering of test cases changes
for every parent-selection event, individuals that perform well on
different subsets of test cases are able to co-exist [2, 6]. A more
detailed description of lexicase selection can be found in [8, 13].

Spector [13] initially proposed lexicase selection as a GP se-
lection scheme for modal problems where qualitatively different
modes of response are required for inputs from different regions of
the problem domain. Subsequent work demonstrated lexicase se-
lection’s efficacy relative to traditional parent-selection algorithms
on uncompromising problems where solutions must perform opti-
mally over the entire space of possible test cases [8]. Part of lexi-
case selection’s success is attributed to its effectiveness at diversity
maintenance; lexicase maintains specialists on test cases that the
majority of the population fail, preserving potentially important
genetic material [2, 6]. For an analysis of lexicase selection in the
context of ecological theory, see [2].

Several variants of lexicase selection have previously been pro-
posed [14]. We propose two new lexicase variants that relax the
need to evaluate all candidate solutions against most test cases, thus
allowing computational resources to be reallocated to additional
search time, larger population sizes, et cetera.

3 DOWN-SAMPLED LEXICASE SELECTION
In each generation of standard lexicase selection, every test in the
test case set is available as evaluation criteria for selection events;
thus, all individuals must be evaluated against most test cases each
generation. Assuming we can store and reuse previously computed
performances for each repeated application of a test case during
parent selection events, lexicase selection’s worst-case number
of per-generation evaluations is equal to the size of the test case
set multiplied by the population size (i.e., every member of the
population is evaluated against every test case once).

Down-sampled lexicase applies the random subsampling tech-
nique [5] to lexicase selection. Each generation, down-sampled
lexicase selects a random subset of the test cases to use for all
selection events, guaranteeing that unselected test cases are not
evaluated against at all. Here, we refer to the our ‘down-sample
factor’ (the subsample rate) as D. For example, D = 10 implies a ten-
fold subsample rate (i.e., each generation, we use 1

10 of the total test
case set to evaluate individuals). This down-sampling divides the
worst-case number of evaluations performed each generation by D,
allowing us to run our evolutionary search for more generations
(or with a larger population size) than standard lexicase selection.
Here, we exclusively apply random subsampling every generation;
however, as discussed by Gonçalves et al. [5], we could also vary
the number of generations at which we apply random subsampling.

Why is down-sampling the test case set preferable to simply
reducing the number of test cases? In down-sampled lexicase selec-
tion, lineages are likely to be tested against a large portion of the
full test set over several generations. Each generation, a candidate
solution will encounter a proportion of test cases equal to 1

D ; thus,
1− 1

D gives the proportion of test cases not encountered by a candi-
date solution in a given generation. The expected proportion of test
cases not encountered by a lineage afterG generations is (D−1

D )G .
To calculate the expected number of generations for a lineage to
be evaluated against proportion T of the test cases for a known
down-sampling rate ( 1D ), we can solve for G in Equation 1.

G =
loд(1 −T )

loд(D − 1) − loд(D)
(1)

Note that a lineage will always encounter proportion T ≤ 1
D

in a single generation, and T asymptotically approaches 1.0 as the
number of generations increases.

4 COHORT LEXICASE SELECTION
Cohort lexicase selection makes use of the full test case set each
generation but ensures that each prospective solution is evaluated
against only a subset of them. Every generation, cohort lexicase
randomly partitions both the population and test case set into K
equally-sized sub-groups (cohorts). Each of theK candidate solution
cohorts is then paired with a test case cohort, and each candidate
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solution in a cohort is evaluated against all test cases in the associ-
ated test case cohort. This means that the number of evaluations
performed each generation (relative to standard lexicase selection)
is divided by K . Candidate solutions only compete within their co-
hort, and within-cohort competition is arbitrated by the test cases
in the associated cohort of tests. In this way, cohorts impose a
sort of island model [15] on standard lexicase selection where each
island’s membership (candidate solutions) and environment (test
cases) is transient, randomized every generation.

Our formulation of cohort lexicase follows the same expectations
as down-sampled lexicase for the number of generations before a
lineage is expected to encounter proportion T test cases (given by
Equation 1). Cohort lexicase’s K and down-sampled lexicase’s D
create an equivalent down-sampling rate. Note, however, in our
implementation of cohort lexicase, tests are not repeated across
cohorts; though, there is no reason why they could not be repeated.

5 METHODS
To test the utility of down-sampled and cohort lexicase selection,
we used both selection schemes to evolve linear genetic programs
to solve five test-based problems from the program synthesis bench-
mark suite [7]: Small or Large, For Loop Index, Compare String
Lengths, Median, and Smallest. A description of our GP system
(including source code) can be found in supplemental material [10].

5.1 Program Synthesis Problems
Problems in the general program synthesis benchmark suite were
selected from sources for introductory computer science program-
ming problems; while not particularly challenging for experienced
human programmers, they can be challenging for current GP sys-
tems [3, 7]. These benchmarks have been used to compare lexicase
selection against other, more traditional selection schemes [7]. Pre-
vious studies (using PushGP [7] and G3P [3]) have shown standard
lexicase selection to be capable of solving the five problems used in
this work, making them good choices for evaluating random test
subsampling in the context of lexicase selection.

Each problem is defined by a set of test cases in which pro-
grams are given input data and are scored on how well their output
matches the correct output (assigning scores on a gradient or pass-
fail basis as appropriate). During an evaluation, the total number
of steps (instructions) a problem could execute varied by problem.

During evolution, programs were assessed using a training set
of test cases, which defined the selection criteria used for lexicase
selection. To qualify as a solution, a program needed to perfectly
pass all test cases in a separate testing set (withheld generalization
examples) in addition to passing all tests in the training set used
during evaluation. For all problems, we used the same training and
testing sets (100 training cases and 1,000 testing cases) and the same
input constraints as in [7]. The exact training and testing sets used
can also be found in our supplemental material [10].

For a more detailed description of the five benchmark problems
used here (Small or Large, For Loop Index, Compare String Lengths,
Median, and Smallest), see [7] or our supplemental material [10].
For each problem, we added problem-specific instructions (see [10])
to our GP instruction set to allow programs to load test case inputs
into memory and submit output.

5.2 Experimental Design
We evolved populations of 1,000 programs under a range of sub-
sampling levels (i.e., the percent of the training set used to assess
candidate solutions) using both down-sampled and cohort lexicase:
5%, 10%, 25%, 50%, and 100% (no reduction). Additionally, we evolved
programs using standard lexicase selection (no subsampling) with
5%, 10%, 25%, 50%, and 100% (no reduction) of the training set; when
reducing the training set for standard lexicase selection runs, we
randomly selected the appropriate percentage of test cases from
the full training set (e.g., 5 of the 100 total test cases when using
5% of the training set), and the reduced training set remained static
for the duration of evolutionary search.

We ran 100 replicates of all conditions, each for a fixed bud-
get of 30,000,000 evaluations (i.e., 300 generations when using the
full training set). Conditions where we subsampled or reduced the
training set ran for more generations than conditions using the
full training set (5%: 6,000 generations; 10% 3,000 generations; 25%:
1,200 generations; 50%: 600 generations). For each problem and
selection condition, we compared the problem solving success rates
(i.e., the number of runs in which a perfect solution evolved) of
using fewer training cases (via cohorts, down-sampling, or static re-
duction) versus using the full training set during selection (Fisher’s
exact test with a significance level of 0.05 and a Holm-Bonferonni
correction for multiple comparisons). All statistical analyses were
performed using the R Statistical Computing Platform [12]. The
source code for our analyses and data visualizations can be found
in our supplemental material [10].

6 RESULTS AND DISCUSSION
Figure 1 shows the problem solving success for all experimental
conditions across all five problems after a fixed number of test
case evaluations; see our supplemental material [10] for more de-
tailed statistical analyses. With the exception of the For Loop Index
problem, reducing the size of the training set for standard lexicase
selection (resulting in more generations of evolution) did not im-
prove (by a statistically significant amount) problem solving success.
Indeed, on the Compare String Lengths, Median, and Smallest prob-
lems, reducing the training set beyond a critical threshold (which
varied by problem) when using standard lexicase selection signifi-
cantly reduced problem solving success relative to using the the full
test case set (e.g., Compare String Lengths, 50% training: p < 0.021; Me-
dian, 10% training: p < 3.68e-10; Smallest, 25% training: p < 0.003). These
reduced success rates are likely due to overfitting: we sufficiently
reduced the training set such that it does not adequately represent
the full space of test cases, and as a result, evolved programs fail to
generalize. On the For Loop Index problem, using standard lexicase
with only 25% of the full training set has a significantly higher
success rate than when using the full training set (p = 0.017); in
this case, reducing the size of the training set to rapidly progress
through more generations pays off, which suggests that the full
training set for this problem is unnecessarily large to thoroughly
assess candidate solutions.

Multiple configurations of down-sampled lexicase significantly
improved problem solving success relative to standard lexicase
across all problems except Compare String Lengths where improve-
ments are not statistically significant (e.g., Small or Large, 50% training:
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Figure 1: Problem solving success rates (i.e., the number of runs in which a perfect solution evolved) for each program synthesis problem.
Note that, here, all conditions using 100% of the training set (regardless of lexicase variant) are qualitatively identical conditions.

p < 0.015; For Loop Index, 25% training: p < 0.002; Median, 25% training:
p < 0.007; Smallest, 50% training: p < 0.024). Similarly, at least one
configuration of cohort lexicase significantly improved problem
solving success relative to standard lexicase across all problems
(e.g., Small or Large, 25% training: p < 0.034; For Loop Index, 10% training:
p < 0.006; Compare String Lengths, 25% training: p < 0.023; Median, 50%
training: p < 0.006; Smallest, 25% training: p < 0.001). The particular
configurations of down-sampled and cohort lexicase that work best
depend on the problem. Neither cohort or down-sampled lexicase
consistently outperformed the other on any of the five problems.

These results suggest that: (1) random subsampling can be used
to improve the problem solving performance of lexicase selection,
and (2) both cohort and down-sampled lexicase are successful ap-
proaches for applying random subsampling to standard lexicase.

7 CONCLUSION
We presented two extensions of the lexicase parent selection al-
gorithm that incorporate random subsampling techniques: down-
sampled lexicase and cohort lexicase. Using these techniques, we
confirm that random subsampling can be successfully applied lexi-
case selection, allowing evolutionary search tomore rapidly progress
through generations and improving problem solving success rates.
Our experimental results suggest that the best configuration of
down-sampled and cohort lexicase depends on the problem. Future
studies will tease apart how different levels of subsampling impact
lexicase selection (e.g., diversity maintenance).
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