
A Biased Random Key Genetic Algorithm for the
Weighted Independent Domination Problem

Guillem Rodríguez Corominas
∗

Universitat Politècnica de Catalunya

Barcelona, Spain

guillem.rodriguez.corominas@est.fib.

upc.edu

Christian Blum

Artificial Intelligence Research

Institute (IIIA-CSIC)

Bellaterra, Spain

christian.blum@iiia.csic.es

Maria J. Blesa

Universitat Politècnica de Catalunya

Barcelona, Catalonia

mjblesa@cs.upc.edu

ABSTRACT
This work deals with an NP-hard problem in graphs known as the

weighted independent domination problem. We propose a biased

random key genetic algorithm for solving this problem. The most

important part of the proposed algorithm is a decoder that trans-

lates any vector of real-values into valid solutions to the tackled

problem. The experimental results, in comparison to a state-of-the-

art population-based iterated greedy algorithm from the literature,

show that our proposed approach has advantages over the state-of-

the-art algorithm in the context of the more dense graphs in which

edges have higher weights than vertices.
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1 INTRODUCTION
The weighted independent domination (WID) problem is an NP-
hard combinatorial optimization problem. The WID problem was

initially introduced in [2]. Three integer linear programming (ILP)

models and a population-based iterated greedy (PBIG) algorithm

were presented in [5, 6]. In this work we make use of one of the

two solution construction heuristics used by the PBIG algorithm in

order to define an intelligent decoder for a so-called biased random

key genetic algorithm (BRKGA). This type of GA was introduced
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in [3] and, since then, BRKGAs have been shown to obtain excel-

lent results for a whole range of combinatorial problems including

the maximum quasi-clique problem [7] and the project scheduling

problem with flexible resources [1], to name a few of the more

recent applications.

1.1 Preliminaries from Graph Theory
Before providing a technical description of the problem it is neces-

sary to shortly introduce the required concepts from graph theory.

An undirected graph is denoted by G = (V , E), where V is a set

of vertices and E the set of undirected edges. Hereby, an edge

e = (vi ,vj ) ∈ E connecting vertices vi ,vj ∈ V may equivalently

be denoted by (vj ,vi ). Moreover, it is said that e = (vi ,vj ) has two
endpoints vi and vj , and thus e ∈ E is said to be incident to them.

When referring to the neighborhood of a vertex vi ∈ V , we may

refer to the open neighborhood N (vi ) := {vj ∈ V | (vi ,vj ) ∈ E} or
to the closed neighborhood N [vi ] := N (vi ) ∪ {vi }. Given a vertex

vi ∈ V , another vertexvj ∈ V withvj , vi andvj ∈ N (vi ) is called
a neighbor of vi in G. Furthermore, the set of edges connecting a

vertex vi ∈ V to its neighbors in N (vi ) is denoted by δ (vi ).
A dominating set in an undirected graph G = (V , E) is a subset

D ⊆ V such that each vertex vi ∈ V is either part of D —that

is, vi ∈ D— or has at least one neighbor vj ∈ D. Furthermore,

an independent set in an undirected graph G = (V , E) is a subset
I ⊆ V such that no two vertices vi ∈ I and vj ∈ I are connected
by an edge from E. An independent set I of G is called maximal,

if by adding any further vertex vi ∈ V \ I to I , set I would lose

its property of being an independent set. It is important to note

that any maximal independent set is a dominating set. Therefore,

a maximal independent set is sometimes called an independent

dominating set. To conclude these preliminaries, ND (vi ) denotes
the D-restricted neighborhood of a vertex vi ∈ V \ D with relation

to a given independent dominating set D ⊆ V , which is defined as

follows: ND (vi ) := N (vi ) ∩ D, that is, the (open) neighborhood of

vi is restricted to all neighbors of vi that are in D.

1.2 The Weighted Independent Domination
Problem

The weighted independent domination (WID) problem can formally

be described as follows. The input to the problem is an undirected

weighted graphG = (V , E,w) with vertex and edge weights. More

specifically, each vi ∈ V , respectively each e ∈ E, has an integer

weight w(vi ) ≥ 0, respectively w(e) ≥ 0. The WID problem asks

for finding an independent dominating set D in G minimizing the

2052

https://doi.org/10.1145/3319619.3326901
https://doi.org/10.1145/3319619.3326901


GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic G. Rodríguez Corominas et al.

4 1

3

15

2

2

1

4

23

1

4

(a) Input graph.
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(b) Optimal solution.

Figure 1: Example of the WID problem. (a) shows a possible
input graph in which vertices and edges are labelled with
their weights, and (b) shows the corresponding optimal so-
lution.

following objective function:

f (D) :=
∑
vj ∈D

w(vj ) +
∑

vi ∈V \D

min{w(vi ,vj ) | vj ∈ ND (vi )} (1)

Expressed in words, the objective function value of D is calculated

as the sum of the weights of the vertices in D in addition to the

sum of the weights of the lowest-weight edges that connect those

vertices not in D to vertices in D. An example for the WID problem

is shown in Figure 1. Both vertices and edges are labelled with their

respective weights. Figure 1a shows a possible input graphG. The
optimal solution to this input graph is shown in Figure 1b. The

vertices forming part of the optimal solution are marked with a

gray background. The lowest-weight edges that connect vertices

not in D to nodes in D are indicated in bold. The objective function

value of the optimal solution is 8, which is composed of the vertex

weights (2 + 1 + 1) and the edge weights (2 + 1 + 1).

2 A BRKGA FOR THEWID PROBLEM
A BRKGA is a steady-state genetic algorithm which consists of a

problem-independent part and a problem-dependent part. In the

following we first describe the problem-independent part, whose

pseudo-code is provided in Algorithm 1. The algorithm starts by

calling function GenerateInitialPopulation(psize), which generates

a population P composed by psize random individuals. Each individ-

ual π ∈ P is a vector of length |V | (whereV is the set of vertices from

the input graph) and the value at position i of π (denoted by π (i))
is a random real value from [0, 1]. Note that value π (i) is associated
to vertex vi of the input graph G. Next, the individuals from the

initial population are evaluated, which is the problem-dependent

part of the algorithm described in the following subsection. After

this evaluation, each individual π ∈ P has an objective function

value denoted by f (π ). Then, at each iteration of the algorithm, the

following actions are performed. First, the best max{⌊pe · psize⌋, 1}
individuals are copied from P to Pe in function EliteSolutions(P,pe ).
Second, a set ofmax{⌊pm ·psize⌋, 1} so-called mutants are generated

and stored in Pm . These mutants are random individuals generated

in the same way as the individuals from the initial population. Next,

a set of psize − |Pe | − |Pm | individuals are generated by crossover

in function Crossover(P, Pe ,probelite) and stored in Pc . Each such

individual is generated as follows: (1) an elite parent π1 is chosen
uniformly at random from Pe , (2) a second parent π2 is chosen

uniformly at random from P \ Pe , and (3) an offspring individual

Algorithm 1 BRKGA for the WID Problem

1: input: an undirected weighted graph G = (V , E,w)

2: input: parameter values for psize, pe , pm and prob
elite

3: P := GenerateInitialPopulation(psize)
4: Evaluate(P)
5: while computation time limit not reached do
6: Pe := EliteSolutions(P,pe )
7: Pm := Mutants(P,pm )

8: Pc := Crossover(P, Pe ,probelite)
9: Evaluate(Pm ∪ Pc ) {note: Pe is already evaluated}

10: P := Pe ∪ Pm ∪ Pc
11: end while
12: output: Best solution in P

π
off

is generated on the basis of π1 and π2 and stored in Pc . In the

context of the crossover operator, value π
off
(i) is set to π1(i) with

probability prob
elite

, and to π2(i) otherwise. After generating all

new offspring in Pm and Pc , these new individuals are evaluated

in function Evaluate(Pm ∪ Pc ). Note that the individuals in Pe are

already evaluated. Finally, the population of the next generation is

determined to be the union of Pe with Pm and Pc .

2.1 Evaluation of an Individual
The evaluation of an individual (see lines 4 and 9 of Algorithm 1)

is the problem-dependent part of our algorithm. In the context of

a BRKGA, the function that evaluates an individual is generally

called the decoder. In our implementation of a BRKGA for the WID

problem, the decoding of an individual π involves the application

of two greedy heuristics that were introduced in [6]. These two

greedy heuristics are described in the following.

Both greedy heuristics (henceforth denoted by Greedy1 and

Greedy2) generate a solution in terms of an independent domina-

tion set S ⊂ V as follows. They start with an empty solution S = ∅

and add, at each step, exactly one vertex from the so-called remain-

ing graph G ′ = (V ′, E ′) to S . They differ in the greedy function

that is employed for choosing this vertex. G ′
is initially a copy of

G. After adding a vertex v ∈ V ′
to S , all vertices from N [v | G ′] —

that is, the closed neighborhood of v in G ′
— are removed from V ′

.

In addition, all their incident edges are removed from E ′. In this

way, the only vertices that can be added to S are those that ensure

that S maintains the property of being an independent set. In case

V ′
is empty, S is a complete solution, and the algorithm stops. The

pseudo-code of this procedure is shown in Algorithm 2.

Greedy function η1 of Greedy1. This greedy function is defined

as follows:

η1(vi ) :=
|N (vi | G

′)| + 1

w(vi )
, for all vi ∈ V ′

where N (vi | G
′) refers to the neighborhood ofvi inG

′
. The vertex

with the highest η1-value is chosen. In other words, vertices with

a high degree in the remaining graph G ′
and with a low vertex

weight are preferred.

Greedy function η2 of Greedy2. For the description of η2, the
following notations are required. First, let wmax := max{w(e) |

e ∈ E}. Second, we make use of an auxiliary objective function
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Algorithm 2 Pseudo-code of Greedy1 and Greedy2

1: input: an undirected weighted graph G = (V , E,w)

2: S := ∅

3: G ′
:= G

4: while V ′ , ∅ do
5: Choose v∗ ∈ V ′

by using greedy function η1 (for Greedy1)
or greedy function η2 (for Greedy2).

6: S := S ∪ {v∗}
7: Remove fromG ′

all nodes fromN [v∗ | G ′] and their incident

edges

8: end while
9: output: An independent dominating set S of G

f aux(.) for the evaluation of partial solutions. More precisely, given

a partial solution S , f aux(S) :=
∑
vi ∈V c(vi | S), where

(1) c(vi | S) := w(vi ) if vi ∈ S .
(2) c(vi | S) := wmax, if vi < S and N (vi ) ∩ S = ∅.

(3) c(vi | S) := min{w(e) | e = (vi ,vj ),vj ∈ S}, if vi < S and

N (vi ) ∩ S , ∅.

Given this definition of an auxiliary objective function, greedy

function η2 is defined as follows:

η2(vi ) := f aux(S) − f aux(S ∪ {vi }) , for all vi ∈ V ′

The vertex with the highest η2-value is chosen.

Greedy1 can then be used in the followingway for the evaluation

of an individual π . First, greedy function η1 is replaced by the

following greedy function:

η′
1
(vi ) :=

|N (vi | G
′)| + 1

w(vi )
· π (i) , for all v ∈ V ′

In other words, the values of the individual are used in order to

bias the original greedy function weights. Then, Greedy1 is applied

using the η′
1
function. Let us denote the objective function value of

the solution produced by Greedy1 on the basis of an individual π
as f1(π ).

A very similar mechanism is used for evaluating individual π
by means of Greedy2. However, in this case we are faced with a

potential problem, because η2 may actually produce negative values

for certain vertices. Therefore, when given a partial solution S , we
first calculate

ηmin

2
:= min{η2(vi ) | vi ∈ V ′}

Then, η2 is replaced by the following greedy function:

η′
2
(vi ) := (η2(vi ) − ηmin

2
+ 1) · π (i) , for all vi ∈ V ′

Let us denote the objective function value of the solution pro-

duced by Greedy2 on the basis of an individual π as f2(π ). The
evaluation function of our BRKGA algorithm finally assigns value

min{ f1(π ), f2(π )} to an individual π .

3 EXPERIMENTAL EVALUATION
The following algorithms were chosen for the comparison: (1) The

two greedy approaches Greedy1 and Greedy2, (2) the population-

based iterated greedy (Pbig) algorithm from [6], and (3) our BRKGA

approach (henceforth labelled Brkga). Note that in [6] it was shown

that when Pbig is applied within a framework known as Construct,

Merge, Solve & Adapt (CMSA), it works even slightly better than

when running it in a standalone fashion. However, we decided

against the comparison of Brkga to this latter approach, because

it is the goal of this preliminary work to develop a standalone ap-

proach that works better than the standalone version of Pbig, with

the future aim of applying Brkga within the CMSA framework.

All experiments concerning Brkga were run on a machine with an

Intel(R) Core(TM) i7-6900K processor with 3.2 GHz, and a compu-

tation time limit of 300 seconds per input graph was used (just like

in the case of Pbig).

Problem instances. For the experimental evaluation we chose a

subset of the problem instances introduced in [6]. In particular, we

chose all graphs with 100 vertices. They are classified according

to type (random graphs vs. random geometric graphs), according

to their density (three different density levels), and according to

their vertex weight scheme (N: neutral; V: vertex-oriented, that is,

vertices have higher weights than edges; E: edge-oriented, that is,

edges have higher weights than vertices). The instance set consists

of 10 graphs for each combination of these three factors. For more

information we refer the interested reader to [6].

Tuning of Brkga. Our Brkga approach has four parameter for

which well-working values must be found. For this purpose we

used the automatic configuration tool irace [4]. In fact, we applied

two different tuning runs: one for random graphs and the other one

for random geometric graphs. For each combination of the graph

density and the vertex weight scheme we selected the first one

of the 10 available problem instances for tuning. This results in a

total of nine tuning instances for each run. Moreover, the following

parameter value ranges were considered:

• psize ∈ {10, 20, 50, 100, 200, 500}.

• pe ∈ {0.05, 0.1, 0.15, 0.2, 0.25}.

• pm ∈ {0.1, 0.15, 0.2, 0.25, 0.3}.

• prob
elite

∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

In total, we allowed amaximum of 2000 experiments for each tuning

run. The results provided by irace were as follows.

• Random graphs: psize = 500, pe = 0.25, pm = 0.2, prob
elite
=

0.6.

• Random geometric graphs: psize = 20, pe = 0.2, pm = 0.2,

prob
elite
= 0.7.

These parameter value settings were used for the final experimen-

tation. Finally, note that the tuning of Pbig (on the same set of

problem instances) is described in [6].

Numerical results. Both Pbig and Brkga were applied—with a

computation time limit of 300 seconds—exactly once to each prob-

lem instance. The numerical results (averaged over 10 problem

instances per table row) are provided in Table 1 (random graphs)

and in Table 2 (random geometric graphs). The first table column

provides the weighting scheme and the second column the value

of the parameter that indicates the density of the graphs (the edge

probability ep in case of random graphs, and the radius r in the

case of random geometric graphs). Note that the best result per row

is shown with a light-gray background. The results allow to make

the following observations:
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Table 1: Numerical results for random graphs.

Weight ep Greedy1 Greedy2 Pbig Brkga

scheme result time result time result time result time

N

0.05 3589.1 <0.1 3519.1 <0.1 3049.8 0.54 3049.8 29.3

0.15 3014.4 <0.1 2981.3 <0.1 2330.9 28.31 2330.9 30.6

0.25 2883.5 <0.1 2796.1 <0.1 2070.9 0.16 2072.8 30.9

V

0.05 10465.6 <0.1 11756.6 <0.1 7747.0 76.47 7719.7 4.8

0.15 4891.6 <0.1 5845.4 <0.1 3050.3 16.9 3046.6 28.8

0.25 3297.5 <0.1 3488.9 <0.1 1808.4 3.5 1808.4 0.8

E

0.05 25698.7 <0.1 22269.3 <0.1 14378.7 0.78 14447.7 35.3

0.15 27528.4 <0.1 23404.5 <0.1 14687.8 0.19 14632.8 77.8

0.25 25451.4 <0.1 21770.0 <0.1 14506.6 <0.1s 14405.6 28.4

Table 2: Numerical results for random geometric graphs.

Weight r Greedy1 Greedy2 Pbig Brkga

scheme result time result time result time result time

N

0.14 3870.6 <0.1 3646.4 <0.1 3261.1 11.93 3261.1 5.6

0.24 3798.8 <0.1 3378.1 <0.1 2882.5 3.04 2882.5 2.6

0.34 3766.6 <0.1 3388.1 <0.1 2828.0 0.7 2833.5 19.3

V

0.14 7364.9 <0.1 7514.3 <0.1 5731.8 12.43 5731.8 7.9

0.24 2880.1 <0.1 2724.2 <0.1 1981.8 <0.1s 1981.8 0.2

0.34 1741.0 <0.1 1832.3 <0.1 968.8 <0.1s 940.5 0.1

E

0.14 29011.6 <0.1 24998.3 <0.1 19313.2 117.61 19190.0 3.4

0.24 35312.1 <0.1 28647.1 <0.1 22108.3 6.36 22065.9 94.1

0.34 37929.4 <0.1 30503.4 <0.1 23900.0 1.14 23754.8 8.2

• Both Pbig and Brkga clearly outperform the two greedy

algorithms.

• For graphs of weight schemes N (neutral) and V (vertex-

oriented) the performance of Pbig and Brkga is comparable.

• Brgka has an advantage over Pbig in the context of edge-

oriented graphs (weight scheme E) when the graphs become

more dense.

• In general, the computation time of Pbig for the densest

graphs is very low, which does not happen for Brkga. This

indicates that Pbig, in contrast to Brkga, gets stuck rather

easily in local minima for these graphs.

4 CONCLUSIONS AND OUTLOOK
In this work we have proposed a biased random key genetic algo-

rithm for solving the weighted independent domination problem in

undirected graphs. The proposed decoder that translates vectors of

real values into valid solutions to the tackled problem is based on

learning the weights of two greedy algorithms. The results show

that our algorithm has advantages over the current state-of-the-art

algorithm for what concerns the more dense graphs produced under

a weight scheme in which edges have higher weights than vertices.

In future work we will extend the experimental evaluation to

larger graphs (the related literature provides, for example, graphs

of 500 and 1000 vertices). Moreover, we will intent to improve

the decoder extending by the employed greedy algorithms with a

rollout mechanism.

It is the goal of this preliminary work to apply Brkga within

a Construct, Merge, Solve & Adapt (CMSA) framework, and to

compare it with the hybrid algorithm proposed in [6], which applies

Pbig within a CMSA framework.
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