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ABSTRACT
The performance comparison of multi-objective evolutionary al-

gorithms (MOEAs) has been a broadly studied research area. For

almost two decades, quality indicators (QIs) have been employed to

quantitatively compare the Pareto front approximations produced

by MOEAs. QIs are set-functions that assign a real value, depend-

ing on specific preferences, to such approximation sets. Mainly,

QIs aim to measure the capacity of MOEAs to generate nondomi-

nated solutions, the diversity of such solutions, and their conver-

gence to the true Pareto front. Regarding convergence QIs, the

Pareto-compliance property is crucial to properly assess the per-

formance of MOEAs. However, in specialized literature, the only

Pareto-compliant QI is the hypervolume indicator. In this paper,

we propose a methodology to construct new Pareto-compliant in-

dicators based on the combination of QIs. Our preliminary exper-

imental results show that our proposed framework to construct

Pareto-compliant QIs introduce new preferences over the Pareto

front approximations.
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1 INTRODUCTION
In the real world, there are several problems that involve the si-

multaneous optimization of multiple, often conflicting, objective

functions [3]. These are the so-called multi-objective optimization

problems (MOPs). Mathematically, MOPs are defined as follows:

min

x⃗ ∈Ω
F⃗ (x⃗ ) = ( f1 (x⃗ ), f2 (x⃗ ), . . . , fm (x⃗ ))T , (1)

where x⃗ is the vector of decision variables, Ω ⊆ Rn is the decision

variable space and F⃗ (x⃗ ) is the vector ofm (≥ 2) objective functions,

where fi : R
n → R, i = 1, . . . ,m. Solving an MOP involves finding

the set of best possible trade-offs among the objective functions

(i.e., solutions in which an objective cannot be improved without

worsening another). The set that yields the optimum values is

known as the Pareto optimal set and its image in objective space is

known as the Pareto optimal front (PF).

To tackle complex MOPs, multi-objective evolutionary algo-

rithms (MOEAs) have arisen as a popular option in recent years.

MOEAs are population-based and gradient-free metaheuristics that

are based on the principles of the natural evolution of species [3].

The main idea of MOEAs is to drive the population towards PF

by selecting the fittest individuals at each generation, typically

using as optimality criterion the Pareto dominance relation,
1
. In

consequence, an MOEA produces a Pareto front approximation
2

per execution.

Since the early days of MOEAs, their performance comparison

has been widely investigated, focusing on determining the quality

of the Pareto front approximations. In the early 1990s, researchers

analyzed the outcomes of MOEAs based on qualitative comparisons

of the convergence and distribution of solutions [6]. However, the

need for quantitative comparisons was evident as the dimension-

ality of the approximation sets increased. In consequence, some

isolated efforts were undertaken to numerically assess the per-

formance of MOEAs [4, 11]. It was until 1999 when David van

Veldhuizen, in his Ph.D. thesis [12], provided a comprehensive re-

view of most of the quality indicators (QIs) available at that time

and also proposed a non-parametric statistical method to analyze

the performance of MOEAs on the basis of QIs. As a result, such a

thesis can be considered as a cornerstone regarding QIs.

1
Given x⃗, y⃗ ∈ Rn we say that x⃗ Pareto dominates y⃗ (denoted as x⃗ ≺ y⃗) if and only

if fi (x⃗ ) ≤ fi (y⃗ ) for i = 1, . . . ,m and ∃j ∈ {1, . . . ,m } such that fj (x⃗ ) < fj (y⃗ ).
In case fi (x⃗ ) ≤ fi (y⃗ ) for all i = 1, . . . ,m, x⃗ is said to weakly Pareto dominate y⃗
(denoted as x⃗ ⪯ y⃗).
2
Let A be a finite set ofm-dimensional objective vectors. A is called a Pareto front

approximation or approximation set if ∀u⃗, v⃗ ∈ A, u⃗ , v⃗ it holds that u⃗ ⪯̸ v⃗ and

v⃗ ⪯̸ u⃗ .
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Mathematically, a unary QI is a function I : Ψ → R, where Ψ is

the set of all approximation sets of sizeN . In other words, QIs assign

a real value to each approximation set A related to an MOP [14].

Consequently, QIs impose a total order in Ψ. However, this formal

definition does not encompass all the characteristics related to QIs

namely, scalability, knowledge-dependence, parameter-dependence,

scaling invariance, and performance criteria [8]. Regarding the lat-

ter, a QI can measure the number of nondominated solutions, the

convergence to PF, the diversity of solutions, or simultaneously

the last two aspects. It is worth noting that an important property

related to convergence QIs
3
is Pareto compliance

4
that, in sum-

mary, ensures that the comparison between the indicator values

of two given approximation sets is in accordance with the Pareto

dominance relation between both sets. Such property has been

extensively studied [14]. Up to date, in the evolutionary multi-

objective optimization community, the hypervolume indicator (HV)

[13] is the most popular Pareto-compliant QI. HV measures the

volume dominated by an approximation set and bounded by an anti-

optimal reference set [1]. HV prefers solutions close to the knee of

the Pareto front and on its boundary. An important drawback of HV

is that its computational cost increases super-polynomially with

the number of objective functions. Therefore, other less expensive

but weakly Pareto-compliant QIs have been recently proposed, e.g.,

the R2 indicator [2], and the Inverted Generational Distance plus

(IGD
+
) indicator [7].

Currently, an open research question concerns the possibility to

construct new Pareto-compliant QIs having different preferences to

those of HV. In this paper, we propose a mathematical methodology

to construct Pareto-compliant QIs based on the combination of as

many weakly Pareto-compliant QIs as desired with at least one

Pareto-compliant QI. To the authors best knowledge, this mathe-

matical framework is the first insight into the combination of QIs

in order to produce Pareto-compliant indicators. The advantages of

our methodology are threefold: 1) we propose a first methodology

to mathematically combine QIs, 2) we extend the number of Pareto-

compliant QIs, and 3) it is possible to improve indicators such as

R2 and IGD
+
by making them Pareto-compliant.

The remainder of this paper is organized as follows. Section 2

presents themathematical developments to construct Pareto-compliant

QIs. Experimental results related to the preferences of the new QIs

are shown in Section 3. Finally, Section 4 overviews our preliminary

conclusions and some possible research paths.

2 CONSTRUCTING PARETO-COMPLIANT QIS
In the following, we introduce the mathematical framework for the

combination of QIs in order to produce Pareto-compliant ones.

Definition 1 (Combination function). A combination func-
tion C : Rk → R assigns a real value to a vector I⃗ = (I1, I2, . . . , Ik ),
where each Ij represents the value of a unary indicator.

Definition 2 (Combined Indicator). Given a vector of k indi-
cators I⃗ = (I1, I2, . . . , Ik ) and a combination function C , a combined
indicator I is defined as follows: I = C (I⃗ ).

3
For the rest of the paper, we will refer to convergence QIs just as QIs.

4
Formally defined in the next section.

Clearly, Definitions 1 and 2 describe a combined indicator I

as a general function that transforms a vector of indicator values

into a single real value. However, for getting more important the-

oretical results, we should say something about the properties of

each Ij , j = 1, . . . ,k and the combination function. Hansen and

Jaszkiewicz [5] defined the case in which the evaluation of two

approximation sets by a certain indicator is compatible with the

result of a Pareto-based outperformance relation applied to these

two sets. Based on this analysis, an indicator could be compliant or

weakly compliant with the outperformance relation. In our case, let

◁ be the outperformance relation between sets, defined as follows:

A ◁ B means that ∀b⃗ ∈ B,∃a⃗ ∈ A : a⃗ ⪯ b⃗ and A , B. The
following two properties formally state both terms. Without loss of

generality, let us assume that a greater indicator value corresponds

to a higher quality.

Property 1 (Pareto compliance). Given two approximation sets
A and B, a unary indicator I is ◁-compliant (Pareto compliant) if
A ◁ B ⇒ I (A) > I (B).

Property 2 (Weakly Pareto compliance). Given two approx-
imation sets A and B, a unary indicator I is weakly ◁-compliant
(weakly Pareto compliant) if A ◁ B ⇒ I (A) ≥ I (B).

Based on the above definitions, we construct a special vector

of indicators that is necessary for the refinement of the combined

indicator model.

Definition 3 (Compliant Indicator Vector). The vector of in-
dicator values I⃗ = (I1, I2, . . . , Ik ) ∈ Q is called a compliant indicator
vector (CIV) if ∀j = 1, . . . ,k, Ij is weakly Pareto compliant and there
exists at least an index t ∈ {1, . . . ,k } such that It is Pareto compliant.
Q ⊆ Rk is called the quality space.

Theorem 1 (Construction of Pareto-compliant combined

indicators). Let I1, . . . , Ik be unary indicators that form a compli-
ant indicator vector I⃗ . A combined indicator I (I⃗ ) is ◁-compliant if it
has the order-preserving property:

∀u⃗, v⃗ ∈ Rk , u⃗ ≻ v⃗ ⇒ I (u⃗) > I (v⃗ ).

Proof. Consider two approximation sets A and B such that

A ◁ B and let I⃗A = I⃗ (A) and I⃗B = I⃗ (B), where I⃗ is a CIV. Then,

A ◁ B ⇒ I⃗A ≻ I⃗B because the Pareto-compliant indicators get

better and the weakly Pareto-compliant ones get better or stay

equal. Moreover, by definition I⃗A ≻ I⃗B ⇒ I (I⃗A ) > I (I⃗B ). Hence,

by transitivity of⇒, it holds A ◁ B ⇒ I (I⃗A ) > I (I⃗B ), i.e., I is

Pareto-compliant. □

Theorem 1 provides a sufficient condition for constructing Pareto-

compliant combined indicators on the basis of compliant indica-

tor vectors. In other words, a combined indicator preserves the

Pareto-compliant property because of the use of order-preserving

combination functions.

Remark 1. The condition of Theorem 1 is suffcient but not nec-
essary. For instance, given I⃗ = (I1, I2, . . . , Ik ) where I1 is Pareto-
compliant and the Ij , j = 2, . . . ,k are not Pareto-compliant, the com-
bined indicator I (I⃗ ) = I1 is also Pareto-compliant. Hence, there is a
large number of possibilities to construct combined indicators.
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There exist many combination functions that have the property

of Theorem 1. However, in this paper, we focus on certain util-

ity functions u : Rk → R that hold the desired property [10]. A

utility function (UI) is a model of the Decision Maker preferences

that assigns to each k-dimensional vector a utility value. Thus, a

combination function C can be defined in terms of these functions.

Generally, UIs employ a convex weight vector w⃗ ∈ Rk (i.e., a vector

that holds

∑k
i=1wi = 1,wi ≥ 0). However, for our purposes, we

only consider wi > 0, i = 1, . . . ,k such that all indicator values

are considered in the combined indicator. Based on the above, a

Pareto-compliant utility indicator (PCUI) is defined as follows:

Definition 4 (Utility indicator). Given a utility function u :

Rk → R, an indicator vector I⃗ ∈ Rk that assesses an approximation
set A and a weight vector w⃗ ∈ Rk such thatwi > 0, i = 1, . . . ,k , we
denote a utility indicator as uw⃗ (I⃗ (A)). If u is also order-preserving
as required in Theorem 1, uw⃗ (I⃗ (A)) is denoted as a Pareto-compliant
utility indicator.

There is a large number of utility functions in the specialized

literature [10]. However, we focused our attention on one of the

simplest UIs, i.e., the Weighted Sum function (WS). Before using

WS to produce PCUIs as claimed in Def. 4, we have to prove that

WS is an order-preserving function.

Definition 5. The weighted sum (WS) is defined by the following
formula:

WSw⃗ (x⃗ ) =
k∑
i=1

wixi , (2)

where x⃗ , w⃗ ∈ Rk andwi ≥ 0, i = 1, . . . ,k .

Lemma 2. Given two CIVs x⃗ , y⃗ ∈ Rk and a weight vector w⃗ ∈
Rk ,wi > 0, i = 1, . . . ,k , then if x⃗ ≻ y⃗ ⇒ WSw⃗ (x⃗ ) > WSw⃗ (y⃗).

Proof. Let’s prove this lemma by induction. Let us consider,

without loss of generality, that the first component of both CIVs is

related to a Pareto-compliant indicator and the rest of components

are related to weakly Pareto-compliant indicators, i.e., x1 > y1 ∧
xi ≥ yi , i = 2, . . . ,k .
Base case:

For k = 2, we have x1 > y1 ∧ x2 ≥ y2. Then w1x1 + w2x2 >
w1y1 +w2y2.
Inductive hypothesis:

Given x⃗ , y⃗ ∈ Rk , then
∑k
i=1wixi >

∑k
i=1wiyi .

Inductive step:

We want to prove that

∑k
i=1wixi + wk+1xk+1 >

∑k
i=1wiyi +

wk+1yk+1. Without loss of generality, let us assume that the (k +
1) components are related to a weakly Pareto-compliant indica-

tor, then xk+1 ≥ yk+1 and for every wk+1 > 0 it follows that

wk+1xk+1 ≥ wk+1yk+1. From the above statement and the induc-

tive hypothesis, we have the following:

k∑
i=1

wixi +wk+1xk+1 >
k∑
i=1

wiyi +wk+1yk+1

WSw⃗ (x⃗ ) > WSw⃗ (y⃗)

Hence, x⃗ ≻ y⃗ ⇒WSw⃗ (x⃗ ) > WSw⃗ (y⃗).

□

3 EXPERIMENTAL RESULTS
The aim of the experimentation is to investigate the preferences

of two PCUIs, i.e., WSw⃗ (HV,R2) and WSw⃗ (HV, IGD+) that in the

following will be denoted as WS(HV,R2) and WS(HV, IGD+). In
both cases, we set w⃗ = (0.1, 0.9), where the greater component is

related to the weakly Pareto-compliant indicator. These two PCUIs

represent the Pareto-compliant versions of the R2 and IGD
+
indi-

cators. The study of preferences is based on correlation analysis,

using the Kendall rank correlation coefficient τ which is a rank-

based nonlinear correlation coefficient measure [9]. Hence, we in-

vestigate the correlation of preferences between HV, R2, IGD+,
WS(HV,R2) and WS(HV, IGD+) to analyze how they rank the

set of all approximation sets. For this purpose, the adopted QIs

ranked different Pareto front approximations (related to the Lamé

superspheres problems having convex, linear and concave Pareto

front shapes) produced by the algorithms SMS-EMOA, NSGA-III,

MOEA/D, MOMBI2, NSGA-II, SPEA2, MOVAP, ∆p -MaOEA, and

IGD
+
-MaOEA. All these MOEAs are adopted in order to have a

sample of the set of all approximation sets for such MOPs. The

way each QI ranked the MOEAs is analyzed using the Kendall’s τ
correlation test using a significance value of 0.05.

Figure 1 shows the correlation results using heatmaps. Concern-

ing the correlation between the PCUIs, the preferences of both

PCUIs for all convex and linear MOPs are independent for all the

objective space dimensions. For concave MOPs, both PCUIs are

positively correlated in all cases for 2 objective functions. However,

they become independent as the objective dimensionality increases.

Such results mean that the preferences of both PCUI are overall

different. Regarding the correlation between PCUIs and their base

indicators, the following can be claimed: WS(HV,R2) is regularly
correlated in a positive way with both HV and R2 for 2 and 3 objec-
tive functions. However, for 4 objectives, WS(HV,R2) is strongly
correlated with R2 and its preferences are independent to those

of HV in all cases. Hence, WS(HV,R2) shows a switching behav-

ior of preferences between the ones of HV and those of R2. This
behavior could be an insight of compensation of weaknesses of

one QI with the strengths of the other. To validate this hypothesis,

WS(HV,R2) could be integrated into the selection mechanism of

an MOEA. WS(HV, IGD+) acts in a similar way to WS(HV,R2)
with the exception that it presents cases where its preferences are

simultaneously independent to both baseline QIs. Additionally, for

highly concave MOPs in 4 objectives, WS(HV, IGD+) is correlated
to both baseline QIs unlike WS(HV,R2) that is always correlated
with R2 and independent to HV.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced a mathematical framework for the

combination of quality indicators. We proposed to combine several

weakly Pareto-compliant QIs with at least one Pareto-compliant

indicator, using an order-preserving function, for example, the

Weighted Sum function, to generate a new Pareto-compliant QI.

The main consequences of our mathematical development are three-

fold: 1) to provide the first guideline to combine QIs, 2) to increase

the number of Pareto-compliant QIs, and 3) to improve weakly
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Figure 1: Heatmaps corresponding to the correlation of preferences.

Pareto-compliant indicators, such as R2 and IGD+, by making them

Pareto-compliant. In the experimental results, we showed a pref-

erence analysis of the Pareto-compliant versions of the indicators

R2 and IGD
+
constructed by our methodology. As part of our fu-

ture work, an in-depth study of the preferences of the PCUIs is

necessary to understand their properties. Additionally, we want to

study the effect of other order-preserving utility functions for the

combination.
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