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ABSTRACT

This paper addresses the problem of optimizing a Demand Respon-
sive Transport (DRT) service. A DRT is a flexible transportation
service that provides on-demand transport for users who formulate
requests specifying desired locations and times of pick-up and deliv-
ery. The vehicle routing and scheduling procedures are performed
based on a set of requests. This problem is modeled as a multi-
objective Dial-a-Ride problem (DARP), in which a set of objectives
related to costs and user inconvenience is optimized while respect-
ing a set of constraints imposed by the passengers and vehicles,
as time windows and capacity. The resulting model is solved by
means of three Multi-objective Evolutionary Algorithms (MOEA)
associated with feasibility-preserving operators. Computational
experiments were performed on benchmark instances and the re-
sults were analyzed by means of performance quality indicators
widely used for multi-objective algorithms comparison. The pro-
posed approaches demonstrate efficient and higher performance
when optimizing this DRT service compared to another algorithm
from the literature.
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1 INTRODUCTION

Demand Responsive Transport is a term used to name flexible trans-
port services that operate on-demand through a fleet of vehicles
(buses, vans, cars, etc.) which is scheduled to carry passengers in
accordance with their needs [9]. To solicit a DRT service, users
formulate requests in which they determine desired pick-up and
delivery locations and time. Usually, a DRT service is shared, that
is users coming from different requests, but with characteristics
in common, whether the location and/or moment of operation of
the service can be served simultaneously by the same vehicle [5].
This type of service is considered an intermediate form of transport
located somewhere between the conventional bus services (shared
and general transport) and the taxis (individual and personalized
transport) [9].

This paper addresses the problem of optimizing both routing
and scheduling plan of a DRT service. In general, this problem
is modeled as a multi-objective Dial-a-Ride problem (DARP). The
DARP consists of planning vehicles routes and defining time sched-
ules in an on-demand collective people transportation service [3].
In the standard problem, multiple users make their requests for
transportation from specific origins to destinations and the trans-
portation service provider seeks to meet all these requests minimiz-
ing operating costs while a set of constraints ensures service level
requirements.

The first researches in the context of transport of passengers
appeared in the decade of 70 [13]. Mainly since [3, 4], studies about
DARP have received considerable attention within the scientific
community. Most of the researches published about DARP are real-
world applications. Extensive reviews of both the DARP literature
and some of its main variants were made by [7, 10].

Most of the DARP solution approaches optimize service cost-
related objectives. As stated by [10], a DARP that optimizes a single
operational objective does not provide any incentive to improve ser-
vice quality, although many authors consider user inconvenience
in terms of hard constraints, such as time windows, maximum user
ride times, maximum waiting times, among others. In many pub-
lications, quality-related objectives have been considered, usually
used instead of an operational objective or even in combination
with it. In the second situation, we have a multi-objective DARP.
The simplest way to deal with this type of problem is through a
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weighted sum of objectives. It scalarizes a set of objectives into a
single objective in which each objective has a user-supplied weight
(e.g. [8])- A second way is considering a lexicographic objective
function. The objectives are optimized by following a hierarchical
structure based on their importance. (e.g.[12]). The third type is the
Pareto multi-objective approaches which have been the subject of
recent researches (e.g. [1, 2, 11]).

In [1], a DRT service is addressed as a multi-objective DARP.
To solve the problem, an evolutionary approach was proposed as
well as a new solution representation and variation operators. Such
mechanisms were integrated into three Multi-objective Evolution-
ary Algorithms (MOEA) state of the art: Non-Dominated Sorting
Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Al-
gorithm 2 (SPEA-2) and Indicator-Based Evolutionary Algorithm
(IBEA). In order to intensify the search process in the solution space,
[2] introduce a hybrid multi-objective evolutionary approach based
on the algorithms used in [1]. The routes are improved by a local
search strategy based on the metaheuristic Iterated Local Search
(ILS) together with the local search 2-opt algorithm within the mu-
tation operator. In both publications, the infeasibility of the solution
is allowed, that is, the algorithms explore the entire search space.
Infeasible solutions (constraints about time conditions and vehicle
capacities are not guaranteed) are penalized during the evaluation
step by receiving high objective values. This procedure eliminates
these solutions in future generations.

In this paper, we present a comparative study in which we eval-
uate a different search strategy from the one used in [1, 2] that
drives a search in the entire search space. Our strategy performs a
search only in the feasible search space. The main goal is to pro-
duce a large set of well spread non-dominated solutions close to the
Pareto-optimal set, that proves the effectiveness of performing the
search only in the feasible search space. A constructive heuristic,
that creates the initial population and new variation operators, that
produce new solutions and diversity, are presented. These modules
are integrated into the same three MOEAs used in [1]. The pro-
posed approaches are compared to an algorithm of the literature
by means of two different performance quality indicators.

The remainder of this paper is organized as follows: Section 2
presents a formal definition of the DRT service addressed. Section
3 introduces the heuristic approaches. Finally, the computational
experiments and conclusion are presented in sections 4 and 5, re-
spectively.

2 PROBLEM DEFINITION

Presented in [1] and [2], the DRT service under study can be formu-
lated as a multi-objective DARP, which optimizes three objective
functions f = (f1, f2, f3) while satisfies a set of constraints. It mini-
mizes the number of vehicles routes (1), the total duration of the
routes (f2) and the total delay in the delivery of passengers (f3).
Given that the problem addressed is a generalization of DARP, it is
also classified as NP-hard.

To introduce flexibility to the service, the authors use a relaxation
strategy and time windows. In addition, slight delays during the
journeys, motivated by detours, are allowed. Making detours allows
the service provider to group the customers into the same vehicle
more easily while producing some delays.
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In this DRT service, all n users have to be served by some vehi-
cle route. Each user formulates a request r, in which defines the
pick-up point r*, the delivery point r~, the number of people to
be carried g, and the desired pick-up time h,+. A time window
duration w,+ at the pick-up point r* is proportional to the journey
duration t,+ .- from r* to r™. It is defined as: w,+ = kyy - t,;+ -,
being k,, a coefficient that indicates the percentage of the duration
allocated to the time window. The theoretical arrival time h,- at
the delivery point is the sum of the desired pick-up time and the
journey duration from r* to r~, resulting in h,~ = hy+ +t,+ ,-. The
maximal delivery time A is defined as: h).- = hp+ + (ky - tp+ -),
being k, a coeflicient of relaxation.

A feasible route must respect a set of constraints. It is feasible if:

e It starts and ends at the depot;

e For every request r, the points r* and r~ belong to the same
route and the point r~ is visited later than the point r*;

o The load of the vehicle does not exceed at any time the max
capacity;

e The service at a pick-up point r* begins in the interval
[Ap+, (hy+ + wp+)] and the service at a delivery point r—
begins in the interval [h,-, h).-];

3 HEURISTIC APPROACHES

In this section, we present the components integrated into the three
MOEAs used (for more details, see NSGA-II [6], IBEA [14], SPEA2

[15]).

3.1 Chromosome and Evaluation

In this work, a candidate solution is represented through a vector
of vehicle routes. Computationally, the chromosome (individual)
adopted is encoded as a two-dimensional representation. Each route
is represented as a vector of transportation request identifiers. Given
that each user request is associated with a pair of points, each one
appears twice in the associated vehicle route. The first occurrence of
the request identifier in the route represents the user pick-up point
r* and the second one the delivery point r~. Note that the request
identifiers together with the appropriate signals are stored in the
order in which they should be visited by the vehicle. Omitted in the
route encoding, the first and last points of each route are the depot,
location in which all vehicles start and finish their journey. Figure
1 presents an example of a solution for a fictitious test instance
composed of eight requests and four vehicle routes.

Figure 1: Solution Example
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A chromosome is evaluated through the evaluation function F =
(f1, f2, f3)- This function computes and returns an objective vector
with three values, which represents the solution in the objective
space. Given that unfeasible individuals are not generated during
the optimization process, penalty strategies are not used.

3.2 Initial Population

In order to create the initial population, which will be improved over
the generations by the used MOEAs, a guided aleatory approach
based on the population initialization strategy introduced by [2]
was proposed. The main difference between the two approaches is
the criterion adopted to prioritize the most urgent user requests.
Given a set of available requests R, taking into account that the
entire fleet of vehicles is initially located in the depot, the proposed
procedure considers the desired pick-up time (h,+) and journey
duration between the depot and the requested pick-up point (tp, ,+)
to define the most urgent requests. Initially, all available requests
are sorted according to h,+ — tp ,+. After that, the m first requests
of the ordered list are assigned to m distinct vehicles, where m is
an input parameter. In this way, the requests that demand greater
urgency in the departure of the vehicles will be prioritized. The
remaining user requests are sorted according to their pick-up time
(hy+). Then, in order, they are added randomly and feasibly to an
existing route. If the request cannot be added, a new vehicle route
is allocated for serving the request. Note that, in each solution,
the number of vehicle routes belongs to a range between m and
the number of available requests |R| (worst case, considering the
objective function fj).

3.3 Crossover Operator

The crossover operator used in this work is based on the classical
operator with one cutting point. Let P; and P, be two parent indi-
viduals randomly selected from the current population and C; and
Cy two individuals built from P1 and P2. Initially, C; and C; are
copies of P; and Py, respectively. To modify Cy, the recombination
operator selects one cutting point [ between 1 and min(|P;|, |P2]).
After that, all routes in the route vector of Cy after [ are removed.
Then, a copy of each route in the route vector of P, after [ is con-
catenated in the route vector of C;. Before that, in order to avoid
duplicate data, all requests coming from P, that are also in some
route of Cq, are removed of C;. Finally, all available requests that
have not yet been assigned to any route of C1 are inserted into
the route and position with the lowest possible insertion cost (less
increase in the total duration). The individual C2 is produced in the
same way by exchanging P1 and P2 roles. A crossover rate P, is
defined to control the probability of performing.

3.4 Mutation Operator

To produce diversity in the current population, we use a mutation
operator that exchanges a single user request between two different
routes. First, a random request r is removed from a random vehicle
route. After that, a different route is chosen to insert r. To that inser-
tion does not cause significant delays and therefore, bring on less
impact on the service quality, for both pick-up and delivery points,
the insertion procedure starts the attempts in the last position of
the route and performs the insertion on the first feasible position
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found. If all insertion possibilities, in the current route, results in
an unfeasible route, a subsequent route is tried until the insertion
is feasible. In the case of r cannot be accommodated by any route,
a new one is created. A mutation rate Py, is defined to control the
probability of performing.

3.5 Stopping Condition

As for the most optimization algorithms, for a MOEA there are no
unanimous stopping criteria among researchers. In this study, all
algorithms are stopped when they reach ¢ seconds of elapsed CPU
time, where ¢ is an input parameter.

4 COMPUTATIONAL EXPERIMENTS

In this section, we discuss the results obtained on several compu-
tational experiments. In order to compare the performance of the
two search strategies, the hybrid algorithm based on IBEA (IBEAF)
introduced by [2] (better performance among all evaluated), was
coded following the authors’ descriptions. The proposed and the
literature algorithms were coded in C++. The computational tests
were run on a 2.50 GHz Intel Core i5 computer, with 6 GB RAM
running Ubuntu 18.04.1 LTS.

All computational experiments were realized using two sets of
test instances introduced by [2]. The first set called “Rnd100” has 10
instances with an almost homogeneous distribution of customers
(conflicting time windows), which contain 100 user requests ran-
domly generated. The second set denoted “Gravit100” contains 10
instances with a non-homogeneous distribution of customers, each
one with 100 user requests generated using a geographical model
of people or freight flows.

4.1 Quality Indicators

To measure the quality of the approximation sets obtained by all al-
gorithms during the computational experiments, we have used two
different quality indicators frequently employed in the literature
on MOEA:s. First, for each instance, we create the set Z all that is
the union of all the approximation sets obtained by the evaluated
algorithms. In order to give a roughly equal range to all objective
functions, each objective vector z € Z all 5 normalized. Finally,
we compute the reference set Z* containing all the non-dominated
points of Z4!,

The first quality indicator is the unary hypervolume indicator Iy
proposed by [16], which measures the hypervolume of the portion
of the objective space that is weakly dominated by an approxima-
tion set A. The higher the value of the indicator, the better is the
quality of the solutions of A. We also use the unary additive ep-
silon indicator I.+ proposed by [17]. Given an approximation set
A, I+ (A, Z*) represents the minimum factor € that any objective
vector in Z* has to be added to obtain a set that is weakly dominated
by A. A small I+ (A, Z*) value is preferable. Note that Z* is used
instead of the true Pareto front.

4.2 Parameter Settings Tuning

To obtain the best performance of our proposed algorithms, we
carried out a parameter settings tuning. All computational experi-
ments at this stage were performed using a sample composed of
8 test instances. For each algorithm, the crossover rate P and the
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Table 1: Indicator values of all algorithms (average on all instances groups and runs)

Instance IBEA_LIT [2] IBEA NSGAIT SPEA2
Hypervolume  Epsilon | Hypervolume  Epsilon | Hypervolume  Epsilon | Hypervolume  Epsilon
Gravit100 Set Avg. 0.2709 0.4768 0.7787 0.0742 0.7706 0.0802 0.7777 0.0767
Rnd100 Set Avg. 0.4329 0.1795 0.5693 0.0307 0.5540 0.0370 0.5604 0.0364
Global Avg. 0.3519 0.3282 0.6740 0.0525 0.6623 0.0586 0.6690 0.0566

mutation rate P,, were tested using four levels {0.2,0.5,0.8,1.0}.
All combinations of these values were tested. For a reliable analysis,
in each instance, we apply all algorithms 10 times with 10 different
seeds. Each run performed with a computation time of 1 minute
and the population and the archive with 100 individuals. According
to results, the best parameter setting for the NSGA-II, IBEA and
SPEA2 are P, = 0.8 and P,, = 0.8, P = 0.8 and Py, = 0.2 and
¢ = 0.8 and Py, = 0.5, respectively.

4.3 Final Results

In order to show the efficiency of feasibility-preserving operators
presented here, for each algorithm, we performed 30 independent
runs on each test instance. Each run was performed with a compu-
tation time of 1 minute. We performed the IBEAg [2] in the same
way, using the parameter setting defined by the authors. Table 1
presents the hypervolume and epsilon means of each instance set
and the global mean of each algorithm. We observe that our algo-
rithms are better in all instance sets, whatever the indicator used.
The IBEAp is always outperformed by its challengers and NSGAIL
and SPEAZ2 appears less efficient than IBEA.

We applied the nonparametric Kruskal-Wallis test to the two
indicator values in order to determine whether our algorithms per-
formed better than the IBEAf at the significance level of 5%. Both
the hypervolume and epsilon values presented P-value < 0.05, that
is the null hypothesis (medians of all the experiments are equal)
should be rejected. Therefore, there is a statistically significant
difference between the obtained results at a 95% confidence level,
whatever the indicator. To check which algorithms differ from each
other, the Nemenyi test was used. When considered the hyper-
volume indicator, by evaluating the p-values of the pairwise com-
parisons, we can see that the test revealed a significant difference
between the IBEAg and the others (P-values < 0.05). Also between
IBEA and NSGA-II (P-value = 0.02) there is a significant difference.
The test did not present evidence of a significant difference between
IBEA and SPEA2 (P-value = 0.50) and between NSGA-II and SPEA2
(P-value = 0.43). Regarding the epsilon indicator, the test presented
evidence of a significant difference between IBEAf and the others
(P-values < 0.05). Also between IBEA and NSGA-II (P-value = 0.00)
and between IBEA and SPEA2 (P-value = 0.01) there are significant
differences. However, there is no significant difference between
NSGA-II and SPEA2 (P-value = 0.79).

5 CONCLUSIONS

In this study, we propose new operators that keep the feasibility of
the solutions. According to the two quality indicators widely used
in the literature, the proposed approach performed better than the
literature approach that works with infeasible solutions. The ob-
tained numerical results have been statistically validated. Therefore,

the focus on the feasible search space has brought improvements
in the quality of the solutions. Future works include the use of
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other meta-heuristics, mainly those with selection based on quality
indicators in order to find a better reference set for larger instances.
Another direction is the use of multi-agent systems to conduct the
optimization process in a distributed way.
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