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ABSTRACT

Limited arity unbiased black-box complexity was proven to be a
successful tool for understanding the working principles of ran-
domized search heuristics and delivered insights to develop new
efficient algorithms. While good upper bounds for simple problems
were found long time ago, there are still no matching lower bounds.

On a road towards closing this gap, we introduce the notion of
limited-memory, limited arity unbiased black-box complexity. We
show that some efficient binary unbiased algorithms (almost) satisfy
the memory-2 requirement, and present an algorithm to compute,
for a given problem size, the exact lower bound on the runtime of
any memory-m k-ary algorithm on any unimodal function.
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1 INTRODUCTION

In the current state of theory of randomized search heuristics there
are two major building blocks that augment each other: runtime
analysis and black-box complexity theory. The former evaluates
the performance of particular randomized search heuristics on
particular problems or problem classes, the latter strives to find
how difficult it is to solve a problem (or any problem from the given
class) by the best suitable randomized search heuristic (and why).
The gaps between the complexities of various problems and the
runtimes of existing algorithms on these problems are an important
source of difficult questions and new inspiring results.
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The notion of unbiased black-box complexity was introduced
in [8] for pseudo-Boolean problems: as evolutionary algorithms and
other randomized search heuristics are designed as general-purpose
solvers, they shall not prefer one instance of a problem over another
one. The definition of an unbiased black-box algorithm guarantees
invariance under transformations preserving Hamming distances.

One of possible refinements of the unbiased black-box search
model is the use of unbiased operators with restricted arity. The
original paper [8] studied mostly unary unbiased black-box com-
plexity, e.g. the class of algorithms allowing only unbiased operators
taking one individual and producing another one, which can also
be seen as mutation-only algorithms. This model appeared to be
quite restrictive, e.g. the unary unbiased black-box complexity of
OneMax was proven to be Θ(n logn) [3, 8].

This inspired a number of works on higher-arity unbiased algo-
rithms [2, 4, 7], since many crossovers are binary unbiased opera-
tors. In particular, in [7] it is proven that the k-ary unbiased black-
box complexity of OneMax is O(n/k) for k = O(logn). However,
no matching lower bounds, other than the unbiased complexity
Ω(n/logn), are known. We aim at closing this gap by investigat-
ing the stricter limited memory, limited arity unbiased black-box
complexity, for which we propose an algorithm to compute sharp
lower bounds for all unimodal functions.

The rest of the paper is structured as follows. Section 2 introduces
the necessary notation and definitions. Section 3 defines our new
memory-mk-ary unbiased black-box complexity and shows that the
existing algorithms that solve OneMax in linear time are (almost)
memory-2 binary unbiased algorithms. In Section 4 we argue on
switching to the BinVal function to continue the analysis. Section 5
describes our algorithm to compute memory-restricted fixed-arity
unbiased complexities. Section 6 concludes the paper.

2 PRELIMINARIES

We denote as [1..n] the set of integer numbers {1, 2, . . . ,n}. The
class of functions OneMax is defined on bit strings of length n as

OneMaxz : {0, 1}n → R;x 7→ |{i ∈ [1..n] | xi = zi }|.

The class of functions called “binary value”, or BinVal, was
introduced in [6] and is defined on bit strings of length n as

BinValz,π (x) =
n∑
i=1

2i−1 · [zi = xπ (i)],

where z ∈ {0; 1}n is the hidden bit string representing the unknown
optimum, π : [1..n] → [1..n] is a hidden permutation of indices
from the range [1..n] that defines which weights are given to which
indices, and the Iverson bracket [.] is the notation for a function that
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converts the logic truth to 1 and the logic false to 0. This function
has a single global maximum at x = z with a value of 2n − 1.

A k-ary variation operator X produces a search point y from the
givenk search points x1, . . . ,xk with probability PX(y | x1, . . . ,xk ).
The operator X is unbiased [8] if the following relations hold for
all search points x1, . . . ,xk ,y, z and all permutations π over [1..n]:

PX(y | x1, . . . ,xk ) = PX(y ⊕ z | x1 ⊕ z, . . . ,xk ⊕ z),

PX(y | x1, . . . ,xk ) = PX(π (y) | π (x1), . . . ,π (xk )),

where a ⊕ b is the bitwise exclusive-or operation applied to two
bit strings a and b of the same length, and π (a) is an application of
permutation π to a bit string a. We use pairs of terms unary and
1-ary, as well as binary and 2-ary, interchangeably throughout the
paper and BBC abbreviation for black-box complexity.

3 MEMORY-m k-ARY UNBIASED BBC

In this section, we define the notion of the complexity which we
are going to investigate in this paper. This is an intersection of the
k-ary unbiased BBC [4, 8] and the limited memory BBC [5].

Themotivation for this particular complexity is that the unbiased
binary algorithm from [4] that solves OneMax in expected time 2n
requires a population size of two, and the (1 + (λ, λ)) GA [2], as we
are going to show later, can be easily transformed into such form.
We will also show that this transformation leaves it unbiased and
does not increase its expected running time on OneMax.

Definition 3.1. A black-box search algorithm is called a memory-
m k-ary unbiased algorithm if it is limited to the following:
• before each iteration starts, the algorithm stores a population
P consisting of at mostm individuals, where the order of the
element matters;
• based only on the fitness values of the individuals from P ,
the algorithm chooses a number 0 ≤ k ′ ≤ k and:
– a sequence P ′ consisting of k ′ individuals chosen from P ;
– a k ′-ary unbiased operator O;
• the algorithm applies the operator O to the chosen individu-
als P ′, produces a new individual д and evaluates it;
• based only on the fitness values of the individuals from
P ∪ {д}, the algorithm constructs a new population Pnew of
size at mostm consisting of individuals from P ∪ {д};
• then the algorithm replaces P with Pnew and continues.

The (1+ 1) EA is a memory-1 unary unbiased algorithm, and the
binary algorithm from [4] is a memory-2 binary unbiased algorithm.

Nowwe show that the (1+(λ, λ))GA is almost amemory-2 binary
unbiased algorithm as well. More precisely, we present an algorithm
with a structure closely following the original (1+ (λ, λ)) GA, where
λ is chosen in a fitness-dependent way, which becomes memory-2
while remaining binary unbiased, and its expected running time
on OneMax does not exceed the one of the original algorithm.

This algorithm is outlined as Algorithm 1. Note that an iteration
of this algorithm is not the same as an iteration of the (1+(λ, λ))GA,
as Algorithm 1 is not allowed to store intermediate individuals. In-
stead, it finds out which phase (mutation or crossover) within an
iteration of the original algorithm is to be simulated by checking
whether the fitness values of the two individuals in the population
are equal. When they are not equal, the algorithm maintains the in-
variant that the first individual corresponds to the parent individual,

Algorithm 1 The memory-2 version of the (1 + (λ, λ)) GA

p0 ← UniformRandom({0, 1}n ); evaluate p0
p1 ← p0
while true do ▷ The parent is p0 and f (p0) ≥ f (p1)

λ←
√
n/(n − f (p0))

if f (p0) = f (p1) then
ℓ ∼ B(n, λ/n) ▷ Mutation phase
p2 ← FlipBits(p0, ℓ); evaluate p2
if f (p2) ≥ f (p0) then

p0 ← p2, p1 ← p2 ▷ Mutation too lucky
else if f (p2) > f (p0) − ℓ then

p1 ← p2 ▷ New good bits→ initiate crossover
end if ▷ No new good bits→ continue mutation

else ▷ Crossover phase
p2 ← Crossover(p0,p1, 1/λ); evaluate p2
if f (p2) > f (p0) then

p0 ← p2, p1 ← p2 ▷ Successful crossover
end if ▷ Unsuccessful crossover, continue

end if

end while

and the second individual corresponds to the best offspring with
at least one new good bit found, so it is time to perform crossover.
Otherwise, the algorithm is within the simulated mutation phase,
so it mutates the parent and creates new offspring much like the
original (1 + (λ, λ)) GA until an offspring with some new good bits,
that are different from the ones in the parent, is found.

This algorithm is clearly unbiased, binary and memory-2. It
differs from the (1 + (λ, λ)) GA in the following important points:
• Both the mutation phase and crossover phase employ syn-
thesizing not exactly λ individuals, but as many individuals
as it is necessary for a successful completion of the phase.
The reason for this change is that a memory-m algorithm
cannot store any counters in any way except for encoding
them in the individuals.
• The condition to enter the mutation phase heavily depends
on the properties of OneMax, so this modification can not
be advised to serve as a replacement for the (1 + (λ, λ)) GA.
• The choice for λ is fitness-dependent, as the self-adjusting
version would require to store the intermediate λ values
somewhere, which is cumbersome for the above reasons.

The last two points, despite they turn the algorithm into a heavily
specialized one, are still acceptable for the BBC research. The first
change does not increase the running time on OneMax, as it just
redistributes the risk for an iteration to have no improvement onto
the individual sampling procedures.

4 FROM ONEMAX TO BINVAL

Unlike the unary unbiased BBC of OneMax, which was proven
in [8] to be reachable by (1 + 1)-style algorithms so that the proof
is able to use only the information about the best found individual,
reasonably precise lower bounds on the unbiased BBC for higher
arities seem to be impossible without considering also the inferior
individuals, and their mutual relations. Indeed, the OneMax fitness
does not reveal enough information to judge on the distribution
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of offspring of two given individuals for the most of cases, even
assuming a particular binary unbiased operator. More information
can be achieved by taking into consideration the chain(s) of opera-
tors that connect these individuals, and the necessity of doing this
complicates the proofs.

For this reason, it makes sense to analyse the BinVal function
instead. The particular version of this function that we are going to
use has been introduced and studied in [6], where the log2 n +O(1)
upper bound on its unbiased BBC was shown. For many complexity
classes, the complexity of OneMax, as well as of any unimodal func-
tion, is bounded from below by the complexity of BinVal Indeed,
the BinVal function serves as a bijection between the genotype and
the fitness that preserves the Hamming distance. This means that
any algorithm, which is capable of optimizing a unimodal function
F , can be applied to BinVal by applying F to the fitness returned
by BinVal written in the binary notation, assuming the complexity
class permits such operations.

On the other hand, the BinVal function ensures that all the
information about the individuals, which is possible to access by
unbiased means, is available to the algorithm through the fitness
function, so our analysis does not have to cope with the problems
imposed by a fitness function which can hide some information. In
total, this motivates the research on the BBC of the BinVal function,
including the one in this paper.

5 ALGORITHM FOR COMPUTING

MEMORY-m k-ARY UNBIASED BBC OF

BINVAL

In this section we describe the algorithm for computing, for any
given n, the expected number of iterations required for an optimal
memory-m k-ary unbiased algorithm to find the optimum of the
BinVal function. Our procedure actually constructs such an algo-
rithm, and its optimality is ensured by the construction procedure,
so the resulting value is exact.

For the sake of brevity, we illustrate the concepts on the memory-
2 binary example, giving some remarks for the general case. The
algorithm can be easily generalized to arbitrarym and k , although
its complexity quickly increases as these parameters grow.

First we note that, given a pair of individuals, a binary unbiased
operator can make separate decisions for the coinciding bits and
the differing bits. In each of the group, some of the bits are guessed
right while others are guessed wrong. While choosing the operator
(and the pair of individuals to work with, in general), the algorithm
actually knows how the bits are distributed by looking at the Bin-
Val fitness. As a result, we can describe the state of a memory-2
algorithm as a quadruple of non-negative integer numbers a00, a01,
a10,a11, such that a00 + a01 + a10 + a11 = n, where:
• a00: the number of bits guessed wrong in both strings;
• a11: the number of bits guessed right in both strings;
• a01: wrong in the first string, right in the second one;
• a10: right in the first string, wrong in the second one.

Similarly, the state of a memory-m algorithm is represented by
2m numbers with the similar semantics. There are Θ(n3) states of a
memory-2 algorithm andΘ(n2

m−1) states of amemory-m algorithm.
Various symmetries can be used to reduce the number of the actually
stored states, although the order will be the same. One can prove

by induction that the decisions of an optimal unbiased memory-m
algorithm for BinVal are a function of this state exclusively.

The decision of the algorithm, based on the current state, con-
sists, as per Definition 3.1, of choosing the individuals, choosing
the operator, and (based on the fitness of the operator’s result)
choosing the new sequence ofm individuals which define the next
state. There is a finite number of choices of the individuals and a
finite number of choices for the new sequence. On the contrast,
there are infinitely many unbiased binary operators. However, each
unbiased operator amounts to choosing (in the binary case) the
number of coinciding bits to flip, and the number of differing bits
to flip. Due to the linearity of expectation the operator that would
minimize the expected running time will choose these numbers
deterministically, and there are finitely many such operators, as
well as finitely many possible outcomes of each operator, where
each outcome is associated with the probability to happen. This
means that the total number of possible decisions in each state is
finite, so all they can be iterated over and considered.

Our proposed algorithm associates with each state S the value
E(S), which will eventually store the expected number of steps
needed to reach the optimum from S . It is conceptually similar to
the Dijkstra algorithm [1, Section 24.3], where the equivalent of
E(S) would be the distance to the origin. Initially, all E(S) ← ∞
except for those states which correspond to having an optimum,
for which E(S) ← 0. Unless all E(S) are finite, we estimate for all
states S where E(S) = ∞ their values E ′(S) by iterating over all
decisions conjoined with the probabilities related to application of
operators, and estimating their results by taking the current values
of E into account. The state Sbest, for which E ′(Sbest) is the smallest,
undergoes promotion: E(Sbest) ← E ′(Sbest), and the process repeats.
The correctness of this algorithm follows from

Theorem 5.1. Assume S+ = {s | E(s) < ∞}, S− = {s | E(s) = ∞},
as well as e = max{E(s) | s ∈ S+}. The following invariant holds:
• min{E ′(s) | s ∈ S−} ≥ e ;
• if sbest = argmin{E ′(s) | s ∈ S−}, no s ∈ S+ will need to
change its decision after executing E(sbest) ← E ′(sbest).

Proof. We prove this theorem by induction.
Base: After the initialization, each state sopt containing the opti-

mumwill have E(sopt) = 0, and each other state s will have E(s) = ∞.
As for each other state the expected number of steps is strictly pos-
itive, the statement holds.

Step: The first part of the statement is proven by contradiction.
Assume sw = argmax{E(s) | s ∈ S+} is the worst already estimated
state, it holds thatmin{E ′(s) | s ∈ S−} < E(sw ) and sbest is the state
where the minimum is reached. Note that the optimal decision for
sbest shall not ever choose to transfer to the state sw , as retaining
in sbest instead will result in a better estimation. This means that
the algorithm should have promoted sbest strictly before promoting
sw , which contradicts its definition.

The second part follows from noticing that, since the first part
holds, any decision s ∈ S+ that would transfer the algorithm to the
state sbest can be replaced with the decision to retain in s , since
E(s) ≥ E(sbest) = E ′(sbest). □

We ran our algorithm for the binary operators (k = 2) and for
two memory sizes (m = 2 andm = 3) for as many problem sizes n
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Table 1: Memory-2 binary unbiased BBC of BinVal

n BBC Step
2 2.0 +2.0
3 2.875 +0.875
4 3.625 +0.75
5 4.84375 +1.21875
6 6.078125 +1.234375
7 7.6171875 +1.5390625
8 8.889322916666668 +1.2721354166666696
9 10.636456564198369 +1.747133647531701
10 12.371170960313359 +1.73471439611499
11 14.038303461036381 +1.6671325007230227
12 15.699654859327913 +1.6613513982915311
13 17.447830553785792 +1.7481756944578795
14 19.0861176120001 +1.6382870582143063
15 20.921320866238506 +1.835203254238408
16 22.647312350057515 +1.7259914838190085
17 24.470455239318323 +1.823142889260808
18 26.20716584775122 +1.7367106084328974
19 28.027618816736567 +1.8204529689853466
20 29.813320310706573 +1.7857014939700058
21 31.639064455561932 +1.82574414485536
22 33.42679155241885 +1.7877270968569157
23 35.25538202472911 +1.8285904723102604
24 37.06383510084354 +1.8084530761144322
25 38.87284223330957 +1.8090071324660286
26 40.71184044975941 +1.8389982164498377
27 42.53445596805067 +1.822615518291265
28 44.35589812642954 +1.821442158378865
29 46.22928990971105 +1.8733917832815123
30 48.03055269421843 +1.8012627845073794
31 49.8944168488537 +1.863864154635273
32 51.708736279416016 +1.814319430562314
33 53.58955127372054 +1.8808149943045223
34 55.39662101796029 +1.8070697442397545
35 57.256590612226496 +1.8599695942662038
36 59.10667818052142 +1.8500875682949243
37 60.95153719120732 +1.8448590106859015
38 62.78320787455084 +1.8316706833435177
39 64.6580888992715 +1.8748810247206649
40 66.49815076211127 +1.840061862839761
41 68.36507159911925 +1.8669208370079815
42 70.20843935621512 +1.8433677570958764
43 72.08905164631821 +1.8806122901030875
44 73.93061687323592 +1.8415652269177087
45 75.798488053211 +1.867871179975083
46 77.65072866957095 +1.8522406163599499
47 79.52642764368056 +1.8756989741096106
48 81.37204113567641 +1.8456134919958487
49 83.23935173105438 +1.8673105953779725
50 85.10708177253406 +1.8677300414796747

as it was affordable on our hardware. The results are presented in
Tables 1 and 2. In both tables, a clear linear trend is observed, and
one can see that the memory-3 complexity is strictly smaller than

Table 2: Memory-3 binary unbiased BBC of BinVal

n BBC Step
2 2.0 +2.0
3 2.875 +0.875
4 3.625 +0.75
5 4.84375 +1.21875
6 6.041666666666667 +1.197916666666667
7 7.572368476823275 +1.5307018101566081
8 8.853198722782997 +1.2808302459597218
9 10.49695541739944 +1.6437566946164424
10 12.040784731611982 +1.5438293142125428
11 13.606199696329744 +1.5654149647177622
12 15.115284915797506 +1.509085219467762
13 16.72988334807649 +1.614598432278985
14 18.311115741599444 +1.5812323935229529
15 19.959933643823767 +1.648817902224323
16 21.572013544291508 +1.6120799004677409
17 23.237874414429374 +1.665860870137866
18 24.900849518865293 +1.662975104435919
19 26.59131342415072 +1.6904639052854264

memory-2 starting at n = 6. This means that at least the memory-
2 unbiased BBC of BinVal is strictly greater than the memory-3
complexity, so it is strictly greater than the general unbiased BBC
of the same problem.

6 CONCLUSION

Our investigation of the lower bounds on the binary unbiased BBC
of unimodal functions were limited in this paper by memory-2 and
memory-3 complexities, which we investigated for BinVal.

Our computations hint that the memory-2 binary unbiased BBC
of unimodal functions is likely linear, and the leading constant is
very close to the algorithm from [4] with the expected running
time of 2n, which shows that it is nearly optimal in its class. We
also disproved the hypothesis that the binary unbiased BBC of the
BinVal function coincides with its memory-2 flavour, as memory-3
complexity already differs.

This research was supported by the Russian Scientific Founda-
tion, agreement No. 17-71-20178.
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