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ABSTRACT
Previous work presented a technique called evolving self-taught
neural networks – neural networks that can teach themselves, in-
trinsically motivated, without external supervision or reward [3]. In
an autonomous multi-agent setting in which the agent is primitively
set to know little or nothing about its environment, self-teaching
was shown to give rise to intelligence, whereas an evolutionary
algorithm alone fails since it has no way to search without gradient
information. In this paper, we conduct another comparative exper-
iment in which the foraging agent is built more conscious of its
environment beforehand. Experimental results show that the more
conscious primitive design can let evolution alone be able to search.
Yet the combination of evolution and self-teaching still outperforms
the alternative. Indications for future work on evolving intelligence
are also presented.
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1 INTRODUCTION
There are two ways in which the organism can adapt to its envi-
ronment. The first is through biological evolution, or phylogenetic
adaptation – this is a change at genetic level of a population. The
second is ontogenetic adaptation, which includes learning – this is
a change at a phenotypic level of an individual organism.

Taking inspiration from nature, evolution and learning from
experience are can be used as two metaphors to create adaptive
neural networks [12]. Interestingly, learning when combined with
evolution can promote an evolving population better than evolution
alone through the so-called Baldwin Effect [2, 4, 5, 7, 8]. This idea
has also been employed in evolving neural networks. Exemplar
studies include [10], [1], in which the combination of evolutionary
search and backpropagation [11] is shown to create more adaptive
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neural networks. One shared feature of these studies is that each
neural network agent stays in isolation, having no interaction.

Taking on this line of thought and with the perspective of artifi-
cial general intelligence (AGI), previous work proposed a technique
called evolving self-taught neural networks, presenting an inter-
play between evolution and self-teaching to develop autonomous
agents [3]. The proposed contribution is a technique that evolves
intrinsically motivated self-supervised neural-networks, a step to-
ward unsupervised learning or learning without (or with very few)
labeled data and without (or very few) a priori knowledge. In [3],
the foraging agent is designed unconscious of its environment and
has to forage for food located very far from it initially. Unlike other
studies in evolutionary robotics [9] or reinforcment learning [13],
the agent (or robot) in [3] does not know anything about its rela-
tionship with the environment like the current position, the relative
angle towards to food source, etc. It was shown that an evolution-
ary algorithm alone failed, whereas some degree of conscious and
autonomous intelligence was demonstrated to emerge from the
interaction between evolution and self-teaching [3].

The finding that evolution alone fails completely to create adap-
tive agents in [3] seems contradictory with most studies on evolu-
tionary robotics and artificial life [9]. I hypothesise that the degree
of priori knowledge in the primitive design of the agent relative
to its environment matters here. In this paper, I extend previous
study in [3] to develop another set of comparative experiments,
in which the agent is designed with more primitive knowledge
about its environment, namely the current angle and the relative
position in the environment. Our simulations are described in the
following section. We shall be seeing a more conscious primitive
design allows evolution to create agents able to forage for food. Yet
evolution and self-teaching still interact to create more adaptive
autonomous agents than evolution alone.

2 SIMULATION SETUP
2.1 The Simulated World
Suppose that 20 agents are situated in a continuous 640x640 2D-
world, called MiniWorld. Agents seek to find resources to feed
themselves in order to survive. The world map used in our simula-
tions as described in Figure 1a. It should be noted that the agent
here is designed more environmentally conscious beforehand com-
pared to previous study [3], as it knows more about its environment
(its current position and angle). This is what I call primitive con-
sciousness of its environment.

All agents in the population live in the sameMiniWorld and their
behaviours interact. As an agent finds and consumes food particles,
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it changes the environment in which other agents live, forming a
more complex dynamics. It can be the case that the more an agent
eats, the less the chance for others to feed themselves. The default
velocity (or speed) of each agent is 1.

Every agent has three basic movements: Turn left by 9 degrees
and move; move forward by double speed; or turn right by 9 degrees
and move. For simplicity, these rules are pre-defined by the system
designer of MiniWorld. The motor action of an agent is guided by
its neural network as described in each simulation below.

2.2 Simulation 1: Evolution alone (EVO)
In this simulation, we evolve a population of agents which do not
have a lifetime learning capability. The neural controller is described
in Figure 1c.

Selection chooses individuals based on the number of food parti-
cles consumed. The higher the number of particles eaten, the higher
the agent’s fitness value. For crossover, two individuals are selected
to produce one offspring. We implement crossover as follows. The
more successful a parent, the greater the likelihood that its weights
are copied to the child. Each weight element in the matrix of the
child network is copied from the fitter parent if the random prob-
ability is greater than 0.5, and vice versa. Once a child has been
created, that child will be mutated based on a predefined mutation
rate of 0.05. Mutation occurs at a specific weight as a random num-
ber is added to that weight. After that, the newly born individual
is placed in the new population. This process is repeated until the
new population is filled with 20 new individual agents. No elitism
is employed in our evolutionary algorithm.

The population goes through a total of 100 generations, with 5000
time steps per generation. At each time step, an agent undertakes
the following activities: Perceiving MiniWorld through its sensors,
computing its motor outputs from its sensory outputs, moving in
the environment which then updates its new heading and location.
In evolution alone simulation, the agent cannot perform any kind
of learning during its lifetime. After that, the population undergoes
selection and reproduction processes.

2.3 Simulation 2: Evolving Self-taught agents
In this simulation, we allow lifetime learning, in addition to the
evolutionary algorithm, to update the weights of neural network
controllers when agents interact with the environment. We evolve
a population of Self-taught agents – agents that can teach them-
selves. The self-taught agent has a self-taught neural network ar-
chitecture as described in Figure 1d.

We use the same parameter setting for evolution as in EVO
simulation above. At each time step, an agent does the following
activities: Perceiving MiniWorld through its sensors, computing its
motor outputs from its sensory outputs, moving in the environment
which then updates its new heading and location, and updating
the weights in action module by self-teaching. After one step, the
agent updates its fitness by the number of food particles consumed.
After that, the population undergoes selection and reproduction
processes as in the Evolution alone simulation. 1

1In these experiments, we implement learning and evolution in a Darwinian, not a
Lamarckian framework. This means that the lifetime learning of an agent (the weights
in its action module) is not passed down to its offspring.

2.4 Simulation 3: Self-taught agents alone
We conduct another simulation in which all agents are self-taught
agents – having self-taught networks that can teach themselves
during lifetime. What differs from simulation 2 is that at the be-
ginning of every generation, all weights are randomly initialised,
rather than updated by an evolutionary algorithm like in simula-
tion 1. The learning agents here are initialised as blank-slates, or
tabula rasa, having no predisposition to learn or some sort of priori
knowledge about the world. The reason for this simulation is that
we are curious whether evolution brings any benefit to learning
in MiniWorld. In other words, we would like to see if there is a
synergy between evolution and learning, or self-teaching here.

Experimental results are discussed in the following section.

3 RESULTS AND DISCUSSION
One notable point here is that evolved agents without learning here
can still search for food, unlike in previous study [3]. This can be
explained by the fact that the agent in the current contribution is
designed more conscious of its environment by the human engineer.
It knows its current position and angle in the environment, thus
having more relevant sensory information to drive its movement.
Conversely, the agent in [3] has no priori and relational knowledge
about its environment at all, it has to be getting more conscious
over time to survive.

First compare the performance between the baseline EVO alone
with EVO+Self-taught. It can be seen in Figure 2 and 3 that the
whole EVO+Self-taught population outperforms EVO alone in terms
of the average fitness. This could be explained by the effect of
individual learning on evolution, or the Baldwin Effect [6]. Yet there
is a difference but not that significant in terms of the best fitness.
In biology, even a little different still implies something interesting.
What has been observed here implies that there are more agents
in EVO+Self-taught having adaptive movements towards the food
source than in EVO alone. Thus, the best agent in EVO alone has less
competitive pressure and more free to eat, whereas the best evolved
self-taught agent has more adaptive competitors. Therefore, even
the difference is not that significant, evolution and self-teaching is
supposed to create the better best agent.

Another curious question here is whether evolution facilitates
learning? It can be observed in Figure 2 that EVO+Self-taught out-
performs the Self-taught alone in both best and average fitness,
and the box-plot in Figure 3 shows that the difference is significant.
One interesting point here is that when agent is designed more
conscious beforehand, the EVO alone outperforms the self-taught
alone population in MiniWorld.

It is plausible here to conclude that even when the agent is de-
signed more conscious of its environment by the human engineer,
the evolved self-taught neural network still presents better adap-
tive behaviour than evolution and self-teaching alone. This, again,
presents an effect resulted from the interaction between evolution
and self-teaching.

4 CONCLUSION AND FUTUREWORK
We have analysed and extended previous study on evolving self-
taught neural networks towards autonomous intelligence [3], by
putting more human-engineered domain knowledge into the design
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Figure 1: MiniWorld – The environment of agents and food, 640x640. 50 food particles are randomly dispersed and each particle is represented by a square image with size 10x10. Each
agent in MiniWorld also has a similar size.
a) Denotew and h as the width and the height of MiniWorld. Initially all agents are located in a radius of 40 (4 times the size of an agent) around a central point: (w/4, h/4). The food has
its horizontal and vertical dimensions randomly chosen in the range (5w/8, 7w/8) and (5h/8, 7h/8), accordingly.
When an agent’s body happens to collide with a food particle, the food particle is “eaten”, the energy level of the agent increases by 1, and another food piece is randomly spawned in the
same region but at a different location. The collision detection criterion is specified by the distance between the two bodies (of the agent and of the food particle). The environment changes
as an agent eats a particle. Each agent has a heading (in principle) of movement in the environment. Rather than initialising all agents with random headings, all the agents are initialised
with a horizontal heading (i.e,. with a heading of 0 degrees). This somewhat explains the purpose of the design the map. Agents are born with facing away from the food source resulting in
a more difficult environment.
b) Assume that every agent has an a priori ability to sense the angle between its current heading and the food if this appears in its visual range. The visual range of each agent is a circle
with radius 40. Each agent takes as inputs, 6 pieces of sensory information. The first three bits (left, front, right) are set to 0 or 1 depending on whether the substance appears (in the left,
front, and right) or not. Let θ (in degree) be the angle between the agent and the substance in its visual sense. An agent determines whether a food appears in the left, front, or right side in
its visual range using the following rule: Right if 15 < θ < 45; Front if θ < 15 or θ > 345; and Left if 315 < θ < 345. The other three sensory inputs are the current angle and the x and y
dimensions in MiniWorld, all normalised in [0, 1].
c) Basic network without learning. Each neural network includes 3 layers with 6 input nodes, 10 hidden nodes, and 3 output nodes. The first layer takes as input what an agent senses from
the environment in its visual range. The output layer produces 3 values in which the max value is chosen as a motor-guidance.The genotype of each agent is the weight matrix of its neural
network, and the evolutionary process takes place as we evolve a population of weights.
d) Self-taught neural architecture. The difference between the output of the reinforcement module and the action module is used to update the weights in action modules through back-
propagation. Through this self-teaching process, the action module approximates its output activation towards the output of the reinforcement module. The learning rate is 0.01. During
the lifetime of an agent, the reinforcement modules produce outputs in order to guide the weight-updating process of the action module. Only the weights of action modules can be changed
by learning, the weights of reinforcement module are genetically specified in the same evolutionary process as specified above in Evolution alone simulation.

of the agent to make it more conscious beforehand. Experimental
results have shown that the conscious design has an effect on evo-
lutionary fitness of the agent, yet the evolved self-taught agents
still outperform both evolution and self-teaching in isolation. The
interplay between learning and evolution has also been demon-
strated in the sense that evolution learning guides the evolutionary
search, and evolution facilitates future self-teaching, better than
blank-slates.

There is several avenues for future research, in different direc-
tions. The idea of self-taught neural networks can be powerful when

there is no external supervision (or label provided from external
data. The algorithm and technique used in this paper can also be
a potential technique to solve unsupervised learning, or learning
with limited label data (weak supervision, especially in reinforce-
ment learning and games. Indeed, the shallow network used in this
paper does not restrict the application of the core philosophical idea
into deep neural networks, as long as we can combine evolutionary
search and the idea of self-taught neural architecture by employing
variants of gradient-based learning.
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Figure 2: Fitness comparison. Left: Best, Right: Average
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Figure 3: Fitness Boxplot. Left: Best, Right: Average

Towards the creation of autonomous and general intelligence,
unlike traditional computational models in reinforcement learning
[13] and evolutionary robotics [9], I propose that the agent should
be equippedwith little or no priori knowledge about its environment
(like in [3]), and let that of the relational understanding between the
agent and its environment emerge as part of conscious intelligence.
The idea of evolving better self-taught agent can be an interesting
attempt to create the emergence of autonomous (or conscious)
intelligence, from the agent-perspective, in that sense, without
human-designed rewards or knowledge.
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