Adaptive Landscape Analysis

Anja Jankovic¢
Sorbonne Université, Paris, France

ABSTRACT

Black-box optimization of a previously unknown problem can often
prove to be a demanding task. In order for the optimization process
to be as efficient as possible, one must first recognize the nature of
the problem at hand and then proceed to choose the algorithm ex-
hibiting the best performance for that type of problem. The problem
characterization is done via underlying fitness landscape features,
which allow to identify similarities and differences between various
problems.

In this paper we present first steps towards an adaptive landscape
analysis. Our approach is aimed at taking a closer look into how
features evolve during the optimization process and whether this
information can be used to discriminate between different problems.
The motivation of our work is to understand if and how one could
exploit the information provided by the features to improve on
dynamic algorithm selection and configuration. Put differently, our
goal is to leverage landscape analysis to adjust the choice of the
algorithm on the fly, i.e., during the optimization process itself.

CCS CONCEPTS

« Theory of computation — Theory of randomized search
heuristics;

ACM Reference format:

Anja Jankovi¢ and Carola Doerr. 2019. Adaptive Landscape Analysis. In
Proceedings of Genetic and Evolutionary Computation Conference Companion,
Prague, Czech Republic, July 13-17, 2019 (GECCO 19 Companion), 4 pages.
https://doi.org/10.1145/3319619.3326905

1 INTRODUCTION

Optimization problems are encountered in many different real-
world scenarios. Very often one is faced with finding the optimal
solution for a problem at hand that is too complex to be analyti-
cally modeled. In those situations, the problem can be seen as a
black box, as the exact relationship between problem inputs and
its output is unknown. Algorithms solving black-box problems are
commonly referred to as black-box optimization algorithms or ran-
domized search heuristics. Black-box algorithms use only different
pairs of the input-output values (where the output is the corre-
sponding value of the function to be optimized for the given input)
to guide the search towards a good estimate of the optimal solution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07...$15.00
https://doi.org/10.1145/3319619.3326905

2032

Carola Doerr
Sorbonne Université, CNRS, Paris, France

Randomized search heuristics all come with a set of parame-
ters that govern their behavior and performance during the run.
Making existing heuristics more efficient and designing new and
improved ones have long been at the core of various research axes.
It is widely acknowledged today that designing a general optimiza-
tion algorithm, which would be able to best solve all different kinds
of problems, is futile: this is proved by the so-called no free lunch
theorem [18]. As such, tackling a new and unknown optimization
problem first amounts to the choice of the most appropriate algo-
rithm (the algorithm selection problem, AS) and/or the choice of
the best parameter settings for the chosen algorithm (the algorithm
configuration problem, AC). While research on AS and AC has for a
long time been studied independently, it has in recent years become
common practice to regard the AS and AC problems as one.

Although extensively covered in literature, it seems that most
of the previous research has focused on the offline perspective of
algorithm selection and configuration, which consists in running
different optimization algorithms entirely on different problem
instances, and then matching measured performance to the given
algorithm. Our ambition is to extend AS/AC techniques to the online
setting, in which different algorithms and/or configurations can be
used in different parts of the optimization process.

1.1 Exploratory Landscape Analysis

In order to make a clever choice of an algorithm and/or to con-
figure it well for the given problem, it is important to have some
knowledge of the problem beforehand. This can be done via some
kind of a problem characterization that would allow us to group
the problems according to their similarities. With this target in
mind, Mersmann et al. [13] have introduced so-called high-level
properties, that describe, for a certain function to be optimized, its
fitness landscape: the degree of multimodality (i.e., if the function
at hand has more than one local optimum), the underlying global
structure, if the problem is separable or not, how its variables scale,
the homogeneity of the search space and basin sizes, the contrast
of global to local optima and whether the function landscape has
plateaus.

However, these properties have a drawback of requiring expert
knowledge in order to use them to classify optimization problems.
This issue was also addressed by Mersmann et al. [12] by intro-
ducing the term exploratory landscape analysis (ELA) and with
that come low-level features of continuous functions, which can be
computed automatically based on a sample of observations (i.e.,
(x, f(x)) pairs) from the given problem instance. Since then, many
new feature sets have been introduced for different computational
needs and goals, and they fall into either of the 2 following classes:
cheap or expensive, depending on their computational cost. Cheap
features are computed using the fixed initial sample, while expensive
features need additional sampling during the run, an overhead that
makes them more inaccessible for practical use. For this reason, in
this paper we only focus on cheap features.

https://doi.org/10.1145/3319619.3326905
https://doi.org/10.1145/3319619.3326905

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

1.2 Online Algorithm Configuration

In recent years, it has been suggested in literature that non-static
choices of algorithms [2, 4] and adaptive parameter configura-
tions [3, 8] could be beneficial for the improvement of the overall
performance of the optimization process. Extending that mindset to
landscape-aware algorithm selection and configuration, we aim to
investigate how problem features change locally depending on the
quality of the already reached solution(s), in hope to understand if
there is an underlying connection between how the fitness land-
scape looks locally and the performance of a certain optimization
algorithm.

This paper presents some first steps in the study of such an
adaptive landscape analysis. Here we take a closer look into the
local feature structure, and focus in particular on gauging what
features values tell us about the nature of the problem, and subse-
quently what information we can extract about how to adapt the
algorithm choice during the optimization process, following the
dynamic change in the fitness landscape. As part of an ongoing
research, we plan to extend the so-called Per-Instance Algorithm
Configuration (PIAC) approach in continuous optimization (suc-
cessfully applied to the configuration of the well-known CMA-ES
algorithm in [1]) to online algorithm selection and configuration
relying on landscape feature values. Apart from parameter control,
we can also target with the same approach an automated algorithm
design. For instance, the modular CMA-ES presented in [16] could
be an interesting test case. A preliminary analysis of its potential
has recently been conducted [15, 17], but has not yet been combined
with a feature-based selection.

2 EXPERIMENTAL SETTING

As in [1], we consider as heuristic of choice for our experiments the
popular Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithm [7]. The CMA-ES regularly updates its covariance
matrix during the optimization process and thus adjusts the proba-
bility distribution from which the solution candidates are sampled.
For our analysis, we consider the BBOB suite of functions on the
COCO platform [6]. From the 24 functions provided in the BBOB
noiseless testbed, we selected 3 (namely F1, F2 and F6), all in 5D,
and focused on the first 5 instances for each of them.

The experiments are designed in a following way: while the opti-
mizer (in our case, the CMA-ES) is running, we track the precision of
the sampled points. Whenever a new target value 10,i = {-2, ..., 9}
is reached, 2000 additional points are sampled from the current dis-
tribution and stored along with their function evaluations (fitness
values). These additional samples do not influence the behavior of
the algorithm and are used only to compute the feature values of
the fitness landscape currently seen by the CMA-ES. We run each
optimization process 5 times, each time using the standard CMA-ES
variant (no restarts, fixed default population size of 6 for 5D).

Landscape feature values are then computed at each target preci-
sion level and for each function and instance. To this end, we only
considered features that do not require additional function evalua-
tions for feature computation (i.e., the cheap features). We therefore
considered 6 feature sets: 3 classical ELA ones (y-Distribution, Lev-
elset and Meta-model), as well as Dispersion [11], Information Con-
tent [14] and Nearest-Better Clustering [9] feature sets, containing

2033

Anja Jankovi¢ and Carola Doerr

68 features in total. Among them, 2 features by set (runtime and
number of function evaluations) were excluded from further anal-
ysis as they do not provide insight into landscape characteristics,
which leaves us with 56 features. For a comparison, we have also
computed the features for the respective BBOB functions, using the
same number of 2000 samples for each of the first five instances
in 5D. These points are normally distributed in the range [-5, 5]
(which is equivalent to the domain of definition of BBOB functions).
These latter are considered as the global feature values for the spe-
cific function/instance. For the purpose of this paper, we consider
average feature values computed over 5 independent runs, and from
hereon we focus exclusively on the first instance of each function.

The experimental code was built upon the original CMA-ES
implementation provided in [5]. The feature computation was done
in R using the flacco library [10].

3 RESULTS

In this section we present some of our preliminary findings for
the adaptive landscape analysis, obtained through the analysis of 3
selected BBOB functions. We include one figure per function, each
presenting results for different feature sets. All three figures show
how the feature values evolve during the optimization process, with
different features on x-axis, feature values on y-axis and target val-
ues as different plots within a figure. The scale has been normalized
to the range [0, 1], for a better visualization of the results. Lastly,
in order to visualize the data more clearly and make the charts
more accessible for understanding, we have purposefully omitted
some target values (namely 1072,107%, 107 and 10~8) from all the
figures.

Figure 1 shows Dispersion and Information Content feature sets
for the function F2 (ellipsoid function). We observe monotonicity in
the relationship between feature values and target values for certain
features, which is most prominent in the case of features IC:eps.ratio
and IC:eps.s from the Information Content feature set. IC feature
set is closely related to the measure of ruggedness of the fitness
landscape, and the monotonicity could be explained by the fact that
F2 is a locally smooth function. The Dispersion feature set exhibits
an overall similar monotonic behavior, although not as consistent
at every feature; this set translates the notion of hardness of the
problem and quantifies the proximity of more interesting regions
of the search space. We remark that these 2 feature sets behave
very similarly in the other 2 functions, albeit not shown here. This
is in line with the previous comment about the monotonicity of IC
features, as F1 and F6 are both smooth functions as well. It is worth
noting that the curve of the global feature values is excluded from
Figure 1 for reasons of scale. However, the general trend seems to
be that global feature values usually differ significantly from local
feature values, indicating that the fitness landscape as seen by the
algorithm differs from that of uniform sampling.

On the other hand, both Figure 2 and Figure 3 display plots of
their respective global feature values along with locally observed
values, which for the most part show stark contrast between the two,
as previously mentioned. Moreover, both of the figures demonstrate
rather chaotic and inconsistent local behavior for most features.
In Figure 2 we observe Meta-model and Nearest-Better Cluster-
ing feature sets for the function F1 (sphere function). Meta-model

Adaptive Landscape Analysis

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

LANDSCAPE FEATURES, FID 2, 1ID 1

——10"2 ——10"1 ——10"0 10°-1

1 & " " " " " " "

—e—10"-3

——10%-5 ——10"-7 —te—10"-0

+ + + + — * +

Figure 1: F2, IID1, normalized feature values for the Dispersion and Information Content feature sets.

LANDSCAPE FEATURES, FID 1, 1ID 1

—4—10"2 —8—10"1 ——10"0 101 —a—10"-3

——10"-5

—— 10%-7 e 10"-9 esemmGiobalF1feature value

Figure 2: F1, IID1, normalized feature values for the Meta-model and Nearest-Better Clustering feature sets.

feature set aims to measure the ability to approximate the objec-
tive function with a linear, quadratic or regression model, while
Nearest-Better Clustering feature set deals with recognizing sin-
gle peaks within a multimodal landscape. Lastly, Figure 3 shows
y-Distribution and Levelset feature sets for the function F6 (attrac-
tive sector function): the former contains features that measure
ruggedness, symmetry and multimodality of the problem at hand,
while the latter is especially useful when dealing with multimodal
functions.

At this stage, the available data does not yet allow for an more
complete intuitive interpretation of the dynamic change of feature
values. Some of the important questions that guide our ongoing
research activities are why these values evolve in such a fashion,
whether these features capture the important knowledge about the
problem instance and if yes, how to exploit that knowledge for the
purpose of recognizing different problems.

2034

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

Anja Jankovi¢ and Carola Doerr

LANDSCAPE FEATURES, FID 6, IID 1

——10"2 —a—10"1 100 10%-1 —e—10"-3

—10"5

—— 107 e 1073

e (5 0 b3l F6 feature value

Figure 3: F6, IID1, normalized feature values for the y-Distribution and Levelset feature sets.

4 CONCLUSION AND FUTURE WORK

Motivated by the quest to design landscape-aware online algorithm
selection and configuration techniques, we have analyzed in this
work to what extent the fitness landscape, as seen by iterative
black-box optimization heuristics, changes during the optimization
process. To this end, we have computed 56 feature values of the
fitness landscape, all belonging to the class of cheap features, as
locally seen by CMA-ES at different target values 107 i=-2,...,9.
Our preliminary analysis focuses on 3 selected benchmark problems
of the BBOB testbed. In an ongoing work we are extending our
approach to the full set of 24 noiseless BBOB functions.

Our next step towards an online algorithm selection will be
coupling feature information to performance of continuous black-
box optimizers. Apart from studying the AS problem on standard
solvers such as CMA-ES, Differential Evolution, EDAs etc., we also
plan to build an online configurator for the modular CMA-ES pro-
posed in [16]. A first indication that a dynamic configurator of this
meta-model is likely to give additional performance gains has been
demonstrated in [17].

ACKNOWLEDGMENTS

We are grateful to Pascal Kerschke, Johann Dréo, and Nacim Belkhir,
for several inspiring discussions around landscape-aware algorithm
configuration.

This work is supported by the Paris Ile-de-France Region.

REFERENCES

[1] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. 2017. Per
instance algorithm configuration of CMA-ES with limited budget. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’17). ACM, 681-688.
Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela
Ochoa, Ender Ozcan, and Rong Qu. 2013. Hyper-heuristics: a survey of the state
of the art. JORS 64, 12 (2013), 1695-1724.

Benjamin Doerr and Carola Doerr. 2018. Theory of Parameter Control for Dis-
crete Black-Box Optimization: Provable Performance Gains Through Dynamic

[2

=

2035

[11

[12]

(13]

[14

[16

(17

[18

Parameter Choices. CoRR abs/1804.05650 (2018). arXiv:1804.05650

Michael G. Epitropakis and Edmund K. Burke. 2018. Hyper-heuristics. In Hand-
book of Heuristics. Springer, 489-545.

Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. 2019. CMA-ES/pycma on
Github. Zenodo, doi:10.5281/zenodo.2559634. (Feb. 2019).

Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, and Dimo Brockhoff.
2016. COCO: A Platform for Comparing Continuous Optimizers in a Black-Box
Setting. CoRR abs/1603.08785 (2016). arXiv:1603.08785

Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),
159-195.

Giorgos Karafotias, Mark Hoogendoorn, and Agoston E. Eiben. 2015. Param-
eter Control in Evolutionary Algorithms: Trends and Challenges. IEEE Trans.
Evolutionary Computation 19, 2 (2015), 167-187.

Pascal Kerschke, Mike Preuss, Simon Wessing, and Heike Trautmann. 2015.
Detecting Funnel Structures by Means of Exploratory Landscape Analysis. In
Proc. of Genetic and Evolutionary Computation Conference (GECCO’15). ACM,
New York, NY, USA, 265-272.

Pascal Kerschke and Heike Trautmann. 2016. The R-Package FLACCO for ex-
ploratory landscape analysis with applications to multi-objective optimization
problems. In Proc. of IEEE Congress on Evolutionary Computation (CEC’16). IEEE,
5262-5269.

Monte Lunacek and Darrell Whitley. 2006. The Dispersion Metric and the CMA
Evolution Strategy. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’06). ACM, 477-484.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and
Giinter Rudolph. 2011. Exploratory landscape analysis. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO’11). ACM, 829-836.

Olaf Mersmann, Mike Preuss, and Heike Trautmann. 2010. Benchmarking Evolu-
tionary Algorithms: Towards Exploratory Landscape Analysis. In Proc. of Parallel
Problem Solving from Nature (PPSN’10). Springer, 73-82.

Mario A. Muioz, Michael Kirley, and Saman K. Halgamuge. 2015. Exploratory
Landscape Analysis of Continuous Space Optimization Problems Using Informa-
tion Content. IEEE Trans. Evolutionary Computation 19, 1 (2015), 74-87.

Sander van Rijn, Carola Doerr, and Thomas Bick. 2018. Towards an Adaptive
CMA-ES Configurator. In Proc. of Parallel Problem Solving from Nature (PPSN’18).
Springer, 54-65.

Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Back. 2016.
Evolving the structure of Evolution Strategies. In Proc. of IEEE Symposium Series
on Computational Intelligence (SSCI'16). IEEE, 1-8.

Diederick Vermetten, Sander van Rijn, Thomas Béck, and Carola Doerr. 2019.
Online Selection of CMA-ES Variants. In Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO’19). ACM. To appear.

David H. Wolpert and William G. Macready. 1997. No free lunch theorems for
optimization. IEEE Trans. Evolutionary Computation 1, 1 (1997), 67-82.

http://arxiv.org/abs/1804.05650
http://arxiv.org/abs/1603.08785

	Abstract
	1 Introduction
	1.1 Exploratory Landscape Analysis
	1.2 Online Algorithm Configuration

	2 Experimental Setting
	3 Results
	4 Conclusion and Future Work
	Acknowledgments
	References

