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ABSTRACT
With improvements in selection methods and genetic operators,
Genetic Programming (GP) has been able to solve many software
synthesis problems. However, so far, the primary focus of GP has
been on improving success rates (fraction of the runs that suc-
ceeds in finding a solution). Less attention has been paid to other
important characteristics and quality measures of human-written
programs. One such quality measure is modularity. Since the intro-
duction of Automatically Defined Functions (ADFs) by John Koza,
most of efforts involving modularity in GP have been directed to-
wards pre-programming modularity into the GP system, rather
than measuring it for evolved programs. Modularity has played
a central role in evolutionary biology. To study its effects on the
evolution of software, however, we need a quantitative formulation
of modularity. In this paper, we present two platform-independent
modularity metrics, namely, reuse and repetition, that make use
of the information contained in the execution traces of the pro-
grams. We describe the process of calculating these metrics for any
evolved program, using problems that have been solved with the
PushGP system as examples. We also discuss some mechanisms for
integrating these metrics into the evolution framework itself.
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1 INTRODUCTION
Genetic Programming (GP) has made huge contributions to the
field of software synthesis, to the extent that it can now solve many
introductory-level computer science programming problems [4].
With improvements in selection methods and genetic operators,
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GP has been able to increase success rates on the problems that
have already been solved and also find solution to new problems.
So far, we have been focusing only on whether a given evolved
program is able to solve the problem or not. This contrasts with the
case of human-written programs, for which we care not only about
whether a program works correctly, but also about how it looks. In
other words, we care about quality in addition to the correctness
of programs. One such quality measure is modularity, which is
defined as the degree to which a system can be decomposed into
separate but inter-connected components. Modularity not only
makes a program easier to understand, it might also be essential to
developing more complex programs.

Modularity has long been studied in evolutionary biology. Many
biological entities - such as, animal brains, gene regulation, protein
interactions, etc. - are modular in nature. Although there does not
seem to be consensus on how it originated in the first place, it
certainly has some advantages - it contributes to the evolvability
(ability to adapt to new environments) of biological organisms [1].
Modular structure is also useful in human written software in a
number of ways. First, it enables the programmer to make changes
to one module without affecting other modules. Second, modules
can act as building blocks, whereby new modules can be added
any time and existing modules can be combined to make more
complex software. And since we expect GP to evolve software in a
similar way, we need to measure modularity alongside fitness of
the evolvable programs.

2 MODULARITY IN GENETIC
PROGRAMMING

The discussion about modularity and its advantages in Genetic
Programming can be traced back to the concept of Automatically
Defined Functions (ADFs), introduced by John Koza in his first book
on Genetic Programming [7]. Although ADFs in their original form
are constrained in how they can be used in an evolving program,
the concept itself has led to the development of other more flexible
forms of inducing modularity, like Automatically Defined Macros
(ADM),Module Acquisition (MA), Adaptive Representation through
Learning (ARL), etc. [3]. Other GP systems like PushGP [14] pro-
vide further flexibility; PushGP has a built-in mechanism for the
evolution of modules through code self-manipulation [15].

All the above-mentioned mechanisms facilitate the creation of
modules during the process of evolution, but none of them try
to measure the amount of modularity in evolved programs. Some
efforts in this direction include Functional Modularity [8], which
considers modules as functional units and takes into account their
performance on test cases. Our metrics, on the other hand, define
modules in a general sense and focus on how frequently the mod-
ules are being used, and not on their functionality. In the future,
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such metrics that focus more on the functional aspect of modules
can be considered along with the metrics introduced in this paper.
In some cases, where the program is essentially a network, modu-
larity is defined in terms of how decomposable the network is into
separable but connected components [6]. Our metrics can calculate
modularity for any program and do not require the program to be
network-like.

3 MODULES
A module can be defined in a number of ways. In software engi-
neering, for example, a module is a part of solution exhibiting some
sort of independence [8], and can be reused any number of times
while writing that solution. In evolutionary biology, a module is
considered as a semi-autonomous entity that can evolves and func-
tion relatively independently from other modules [2]. In network
science, a given network is considered modular if it contains highly
connected clusters of nodes that are sparsely connected to nodes
in other clusters [1].

To define amodule for ourmeasures ofmodularity, we refer to [5]
which defines a module as an encapsulated group of elements in
the program that can be manipulated as a unit. The exact definition
of an element, however, will depend on the particular system we
are measuring modularity for. For example, in a C++ statement “int
x=5;", we can have as elements, the whole statement, or the tokens
like “int", “x", etc. By the definition given above, a group of elements
such as a labeled or unlabeled procedure, a chunk of code that gets
iterated multiple times, etc., is a module. From now on, we will be
using elements and instructions interchangeably.

We, however, impose certain conditions on a set of instructions
for it to be termed as a module:

(1) All the elements comprising the module must be together in
the program in sequence. For example, if there is a sequence
“ABC” in the program, the possible modules are: “A”, “B”, “C”,
“AB”, “BC”, and “ABC”. Set of instructions like “AC”, “CBA”,
etc. will not be considered as modules.

(2) There should be a specific beginning and an end to a mod-
ule. For example, if “ABC” is a module, it should start with
“A” and end with “C” every time it appears in the program,
irrespective of its location.

(3) While executing, the whole module should execute as a
group. Chunking or splitting of a module is not allowed.

4 MODULARITY METRICS
There exists a well-defined measure to calculate modularity in
networks [9, 10]. This metric is very useful in the domains where
the structure of the object is network like or can be converted
into one [1, 2, 11]. There are however, many domains - most of
the genetic programming systems, for example - where either the
object under consideration itself can not be converted to a network,
or the analysis becomes very complex when we try to do so. Our
measures of modularity fills this gap, at least for the field of genetic
programming.

Depending on how one uses the information about the number,
type, and size of modules, there can be multiple measures of modu-
larity, which may or may not be combined into a single measure.
In this paper, we present two such measures: reuse and repetition.

Reuse is defined as a measure of the number of times a particular
copy of a module gets executed. Repetition, on the other hand, is a
measure of the number of times different copies of a module get
executed.

5 MODULARITY BASED ON EXECUTION
TRACE

In this section, we present measures of modularity calculated from
the information given in the execution trace of a program. We also
provide the the procedure to calculate these measures.

5.1 Design Principles
We have used the following principles to guide the design of our
measures:

(1) Frequency of use should matter much more the length of
a particular module. For example, a module of length two
repeated four times should have more reuse/repetition than
a module of length four repeated two times.

(2) A part of a module is also a module provided that it satisfies
the conditions given in Section 3. For example, if “ABC” is a
module, “A”, “B”, “C”, “AB”, “BC” are also modules.

(3) Reuse and repetition should have similar formulations since
both of them use size and frequency of modules in a similar
way.

(4) Reuse and repetition should be independent of each other.
This means that a program can have high reuse with low
repetition and vice-versa.

5.2 Execution Trace
The order in which instructions in a given program are executed
can be different from the order in which they appear in the program.
To calculate modularity metrics for any programming language,
the execution trace in that language should give the exact order of
execution of instruction and a way to identify the instructions in
the trace, using either the exact text of the instruction or a pointer
to it (for example, line number).

5.3 Reuse and Repetition
To calculate the measures, we need to assign unique identifiers to
all the instructions of the program. For the sake of simplicity, we
assign as identifiers the position of instructions in the program.
This means, the even two instruction are same but they appear on
two different locations, they will be given two different identifiers.
If during the execution, an instruction appears that was not present
in the original program, it is also assigned an identifier that is
different from the ones already used. The identifier serves as meta-
data for the instruction during its execution. When the program
gets executed, we obtain an execution trace. Since the instructions
were accompanied by identifiers throughout the execution, we can
extract two types of sequences from the trace - one of instructions
and another of identifiers.

From this execution trace, we can calculate the reuse (U ) as

U =

∑l
i=1

∑l−i+1
j=1 i · 2n

i
j

2u
(1)
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and repetition (P ) as,

P =

∑l
i=1

∑l−i+1
j=1 i · 2m

i
j

2v
. (2)

The parameters used in the above equations are described below:
• u is the number of instructions with different identifiers used
in the execution trace, or, in other words, number of unique
identifiers in the execution trace.

• v is the number of instructions of the program used in the
execution trace, irrespective of their identifiers.

• nij is the number of times jth module of length i appears in
the execution trace (one set of instructions in the program
being usedmultiple times in the execution trace). To calculate
this number, we can use the meta-data associated with each
instruction.

• mi
j is the number of times different copies of jth module of

length i appears in the execution trace (multiple copies of
the same set of instruction having different identifiers). To
calculate this, we have to use both instructions and their
identifiers appearing on the execution trace.

We are only considering those modules which are executed at least
twice (nij > 1 and mi

j > 1). This will simplify our calculations
because otherwise, we will not be able to know the boundaries of
the modules just by looking at the execution trace.

Reuse can have a maximum value of 2l , where l is the length of
execution trace. This happens when there is a program of single
instruction and that instruction repeats l times in the execution
trace. Similarly, Repetition can also have a maximum value of 2l ,
when one instruction is repeated l times in the program. Both of
these measures can have minimum value of zero. In most of the
programs in real world, there are many unique instructions, with a
very small number of instruction repeating in the execution trace.
Hence,the denominator in Equations 1 and 2 becomes very large
and the reuse and repetition usually have very small values.

Reuse and repetition can also be combined to get a singlemeasure
of modularity as M = f (U , P), where f is a function such that it
increases with increasingU and decreases with increasing P . We
will not combine the two measures and will let the user of these
measures define f according to their needs.

5.4 Example
We will now consider a toy example and calculate reuse and repeti-
tion for it. Consider the following program (each letter denotes a
single instruction and for the purpose of simplicity, we have not
show the arguments): ABCABD. And according to the procedure
described in Section 5, we assign identifiers to all the instructions:
{A:1, B:2, C:3, A:4, B:5, D:6}. Note that the identifier associated with
each instruction is basically its location in the program. Assume
we get the following execution trace: {A:1, B:2, C:3, A:1, B:2, C:3, A:4,
B:5}.

For calculating Reuse, we look at the metadata associated with
the trace (12312345). And hence we have the following modules
(appearing at least twice in the trace), after converting idenfiers back
to instructions: A, B, C, AB, BC, ABC. Note that only five unique
identifiers have been used in the execution trace. Accordingly, we

can calculate Reuse and as:

U =
1 · (22 + 22 + 22) + 2 · (22 + 22) + 3 · (22)

25
= 1.25

Similarly, for Repetition, we look at the instruction in the trace
(ABCABCAB). Here, we have the following modules (appearing at
least twice in the trace): A, B, AB. Note that ABC is not a module for
this measure because it has the same meta-data, implying it is the
same copy used twice. Considering only three unique instructions
are used here, we can calculate the measure as:

P =
1 · (22 + 22) + 2 · (22)

23
= 2.0

6 CALCULATING MODULARITY FOR PUSH
PROGRAMS

In this section, we will look at the typical values of reuse and repeti-
tion for the programs evolved in Push[12] as examples. Though our
measures are independent of the programming language and GP
system in which a given programs has been evolved, we use Push
language because it has some in-built features that allow for the
expressions of modules [15]. One such feature is that “code” itself
is a type in Push that can be manipulated and executed as a unit.
We believe the process we describe here can be used in other types
of GP systems with very few changes.

Push is a stack based programming languagewith separate stacks
for each of the data types. During execution, the instructions take
their inputs from and place their outputs on different stacks. In
each iteration, the top element of the execution stack gets executed.
Hence, the sequence of the top elements on the execution stack
after every iteration becomes the execution trace. The GP system
designed to evolve programs in Push is known as PushGP [12].

Using the procedure defined in Section 5, we calculate the mod-
ularity metrics for some of the evolved Push programs in PushGP.
The programs with the corresponding reuse and repetition values
are given in Table 1. In the next paragraphs, we will try to explain
the modularity values for the examples in Table 1.

Example 1. The first example shows a program evolved for the
Double Letters problem given in benchmarking suite of [4] (Sec-
tion 4, Problem 5). The program has non-zero reuse because of
the presence of instructions like exec_while and exec_dotimes.
exec_while keep on executing the code on the top of exec stack as
long the top element of boolean stack has the value true. Similarly,
exec_do*times executes the code on the top of execution stack a
certain number of times. Both of these instruction perform looping,
meaning a set of instructions get executed multiple times. Hence, a
non-zero value of reuse.

Example 2. The second example is an evolved program for sym-
bolic regression problem, where we try to evolve program for
x3 − 2x2 − x . This program has zero reuse as there are no looping
instructions. It has a high value of repetition because most of the
instructions are repeated in the program itself.

7 EVOLUTION GUIDED BY MODULARITY
It is quite probable that there does not exist any correlation be-
tween modularity and fitness of a given program. This is because
a program with very low fitness value can get a good modularity
value on account of it having a lot of useless functions. Similarly,
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Table 1: Reuse and Repetition values for some programs. The instructions in bold are the looping instruction that increase the
value of Reuse. The underlined instructions, on the other hand, are repeated in the program and hence, increase the value of
Repetition. Note that there are more looping and repeated instructions than those highlighted here.

Sr. No. Program Problem Reuse Repetition

1 (integer_stackdepth string_flush string_yankdup integer_lte
boolean_invert_first_then_and char_empty exec_empty
boolean_swap string_conjchar boolean_invert_first_then_and
char_isdigit string_yank in1 char_isdigit char_dup
string_stackdepth print_string string_dup_items string_substring
exec_stackdepth boolean_empty exec_noop string_substring
exec_while (boolean_invert_second_then_and string_shove
char_empty string_conjchar exec_s () (string_dup_times
integer_div exec_swap (exec_do*times (string_replacechar
char_allfromstring integer_eq integer_min integer_dec
char_isletter integer_mult string_indexofchar integer_flush)
integer_fromchar exec_string_iterate () string_butlast
char_frominteger) (integer_dup_items string_split exec_dup
(char_yankdup string_occurrencesofchar) integer_inc
string_concat) string_take) () string_pop) exec_y (char_eq))

Double Letters 5.96E-8 1.91E-6

2 (integer_div integer_sub integer_mult integer_div integer_mult
integer_sub integer_sub 2 integer_sub integer_div in1
integer_mult in1 integer_mult integer_mult integer_mult
integer_sub in1 integer_sub integer_sub)

Symbolic
Regression

0.00E0 1.71E1

a program with a high fitness value can have a low modularity
because every modular program can be written in a monolithic
fashion.

Though fitness and modularity are not correlated, we might still
need modularity to help us build more complex programs. And one
of the ways to evolve modular solutions for a problem is to exert
an indirect selection pressure on the population. In this scheme,
modularity becomes a secondary selection criterion, i.e., out of two
individuals, the one having higher modularity value will be selected
only if both of them have the same fitness values.

These measures of modularity can also help guide the devel-
opment of some of the techniques - for example, tag based mod-
ules [13, 15] in PushGP - that try to equip the evolutionary processes
to evolve more modular programs.

8 CONCLUSIONS
Modularity is all pervasive - from neural networks in our brains
to almost all of the human written software - and yet the field of
genetic programming has not paid enough attention to it. In this
paper, we presented two measures that capture different aspects of
modularity. These measures are general purpose and platform inde-
pendent. We described the procedure to calculate these measures
from execution traces. To calculate these measures on some real
world programs, we used the programs evolved in PushGP.We have
provided a preliminary sketch of ways in which the modularity
measures described in this paper could be used to guide evolution
to create more modular programs, which we hypothesize will help
us to find solutions to more complex problems. These measures
can also help us study the effects of modularity on the evolution of
software.
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