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ABSTRACT
Many real-world optimization problems involve both multiple ob-
jectives and constraints. Although constraint handling in multiob-
jective optimization has been considered in the literature, there
is still a high demand for more advanced and versatile constraint
handling techniques (CHTs) in real-world applications. For this
reason, we propose a general approach to combine multiple CHTs
into an ensemble-based method, providing a framework to easily
construct new CHTs from existing ones. The approach is evaluated
on nine test problems from the literature using an ensemble of
four widely-used CHTs. The experimental results show that the
ensemble is more robust than single CHTs and performs at least as
well as the best single CHTs on all the test problems. Moreover, a
positive synergistic effect of the ensemble is demonstrated on three
problems.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making; • Theory of computation → Bio-inspired
optimization;
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1 INTRODUCTION
Real-world optimization problems regularly involve both multiple
objectives and constraints. Such problems are called constrained
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multiobjective optimization problems (CMOPs) and are known for
being hard to solve. A CMOP can be formulated as

minimize fm (x), m = 1, . . . ,M
subject to дn (x) ≤ 0, n = 1, . . . ,N

where x = (x1, . . . ,xD )
T is a decision vector, fm : S → R are

objective functions, дn : S → R constraint functions, S ⊆ RD is a
decision space of dimension D, and M and N are the numbers of
objectives and constraints, respectively. Additionally, fm (x) is an
objective value and max(дn (x), 0) constraint violation.

Among the most widely used approaches to deal with CMOPs
are undoubtedly multiobjective evolutionary algorithms (MOEAs)
equipped with constraint handling techniques (CHTs), since they
are capable of finding a good set of feasible individuals—solutions
to the given problem—in a single run. However, until recently the
development of CHTs for multiobjective optimization problems has
received little attention in the evolutionary computation commu-
nity. According to [9], the main reason for this is that it is generally
believed that CHTs developed for single-objective optimization can
be easily adapted for multiobjective optimization.

Nevertheless, a comprehensive study on incorporating single-
objective CHTs into multiobjective optimization has only recently
been presented in [3]. In that study, a generic framework applicable
to almost all state-of-the-art MOEAs and all fitness-based and/or
rank-based CHTs was proposed. The idea was to use a MOEA-
specific approach to assign to each individual a fitness and/or rank,
and then consider the given multiobjective problem as a single-
objective one. Beside supporting comparative studies, this frame-
work also makes it easy to combine several CHTs into a hybrid
CHT, ensemble-based CHT, etc. Similar approaches have already
proved effective in single-objective optimization [7] but have not
been widley studied on CMOPs.

In this work, we propose a general approach for combining mul-
tiple CHTs into an ensemble-based CHT and utilize the proposed
framework to incorporate the ensemble into a custom MOEA based
on the Nondominated Sorting Genetic Algorithm II (NSGA-II) [1].
In addition, we identify nine relatively difficult CMOPs from the
literature and use them to assess the performance of an ensemble
of four CHTs.

The rest of this paper is organized as follows. Section 2 introduces
the ensemble of CHTs and presents the general framework for
incorporating CHTs into MOEAs. Section 3 is dedicated to the
experimental setup, while the results are discussed in Section 4.
Finally, Section 5 summarizes the study and provides some ideas
for future work.
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2 METHODOLOGY
This section presents the methodology used in our study. After
introducing the general framework for the ensemble of CHTs, we
discuss the inclusion of the ensemble into an MOEA based on
NSGA-II.

2.1 Ensemble-Based CHT
We consider only CHTs which are applied in the replacement phase,
i.e., survivor selection, of an evolutionary algorithm. For any finite
population of individuals, P ⊆ RD , a CHT is supposed to provide
some sort of a quality measure combining individuals’ objective
values and constraint violations. For this reason, we define a general
CHT by a set of maps, c : P→ [0, 1], which assign to each individ-
ual x , from a given population P, a quality measure taking values
from [0, 1]. Here, the value of the quality measure is inversely pro-
portional to the individual quality. In this formulation, the quality
measures are normalized to allow for comparison of individuals’
quality among various CHTs.

At this point, we can define the ensemble of CHTs as follows.
Given a set of CHTs, {ci : P→ [0, 1]}Li=1, the ensemble of constraint
handling techniques, ce : P→ [0, 1], is defined as

ce (x) =
L∑
i=1

wici (x)

where
∑
i wi = 1 and wi ≥ 0. The weights, wi , determine the im-

portance of each CHT in the ensemble. For example, large weights
give a high impact to the corresponding CHT during the ensemble-
based quality measure assignment. On the other hand, for a weight
close to zero the ensemble almost ignores the corresponding CHT.

Since the ensemble is a CHT itself, it can be included in almost
any MOEA following the framework discussed in Section 1. A
modified version of NSGA-II capable of incorporating ensembles of
CHTs is presented in the following subsection.

2.2 Modified NSGA-II
The pseudocode of the modified NSGA-II is shown in Algorithm 1.
Until the replacement phase (Lines 11 to 16), the modified version is
identical to the original version of NSGA-II [1]. Specifically, binary
tournament selection is used for parent selection (Line 6), simu-
lated binary crossover for recombination (Line 7), and polynomial
mutation as a mutation procedure (Line 8).

The replacement phase is where the modified algorithm differs
from the original. First, the Pareto rank and crowding distance
are assigned to each individual using nondominated sorting and
crowding-distance assignment (Line 12). Second, for each individ-
ual a fitness is calculated as the individual’s Pareto rank minus
its normalized crowding distance (Line 13). Here, the crowding
distance is subtracted in order to consider individuals with larger
crowding distance to be fitter than those with smaller crowding
distance. In addition, the crowding distance values are normalized
to preserve the Pareto ranking of individuals. Next, ranks are as-
signed to all individuals by sorting them according to their fitness
(Line 14). Finally, any fitness-based or rank-based CHT can be used
to select among the best individuals (Lines 15 and 16).

However, in order to include a CHT into an ensemble, it has to
provide a normalized quality measure for each individual. This is

Algorithm 1 Modifed version of NSGA-II
Input: population size, CHT, stopping criterion;
Output: population P of feasible individuals;
1: create the initial population P of random individuals;
2: evaluate x ∈ P;
3: while stopping criterion not met do
4: Pnew ← ∅;
5: for i ∈ 1 : |P|/2 do
6: select two parents x1,x2 ∈ P;
7: performer crossover on x1,x2;
8: mutate x1,x2;
9: Pnew ← Pnew ∪ {x1,x2};
10: end for
11: Pnew ← Pnew ∪ P;
12: assign Pareto rank and crowding distance to x ∈ Pnew;
13: assign fitness to x ∈ Pnew;
14: assign rank to x ∈ Pnew;
15: evaluate x ∈ Pnew according to the selected CHT;
16: P← |P| best individuals from Pnew;
17: end while
18: return P;

achieved using the CHT-specific approach, usually, by normalizing
the fitness and/or ranks generated by the CHT.

3 EXPERIMENTAL SETUP
In this section we present the experimental setup of our study.
After introducing the CHTs chosen for the experiments, we briefly
discuss the test problems and describe the parameter settings.

3.1 Constraint Handling Techniques
In the experiments we used four single CHTs and the ensemble
combining these CHTs:
• Nondominated sorting (NDS) [1]: This method selects the
new generation of individuals according to the dominance
relation not considering constraint violations at all.
• Constrained-domination principle (CDP) [1]: This CHT can
be seen as an extension of NDS, where feasible individu-
als dominate infeasible ones, and infeasible individuals are
ranked according to the overall constraint violation.
• Multiple constraint ranking (MCR) [4]: In this approach the
individuals are ranked based on the fitness and constraint
violations. If there are no feasible individuals, only the rank
generated from constraint violations is considered, otherwise
a combination of both ranks is taken into account.
• Dynamic penalty function (DPF) [2]: This method augments
the fitness of an individual by the addition of a penalty that is
proportional to the overall constraint violation. The penalty
pressure is increased in each generation.
• Ensemble of CHTs (ENS): Ensemble of NDS, CDP, MCR, DPF
as proposed in Section 2.1 with uniform weights,wi = 1/4.

In addition, to provide quality measures used by the ensem-
ble, each CHT was adequately modified using the CHT-specific
approach. For MCR and DPF the corresponding ranks and fitness
values were normalized only. In contrast, for NDS and CDP we used
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a similar approach as described in Section 2.2, i.e., assigning fitness
from Pareto ranks and crowding distances. The only difference was
that the constrained-domination principle was used in the Pareto
ranking for CDP instead of the dominance relation.

3.2 Test Problems
From the test CMOPs found in the literature, we chose those that
are believed to be difficult to solve or were proposed in [5, 13]
as appropriate test problems. The presented ensemble-based CHT
was experimentally evaluated and compared with single CHTs on
six artificial CMOPs: SRN [12], OSY [11], C3-DTLZ1 [6] and C3-
DTLZ4 [6], where the three-objective and four-objective versions
of the last two problems were used. In addition, three real-world
problems (RWPs) frequently used to evaluate the performance of
MOEAs were considered in the experiments as well: the water
resource planning problem [10], the car-side impact problem [6]
and the vibrating platform problem [8]. Some basic characteristics
of the test problems are shown in Table 1.

3.3 Parameter Settings
The experiments were conducted using the algorithm parameter
settings that were found suitable in preliminary runs. All the al-
gorithms were run with populations of 200 individuals for 500
generations. Specifically, for MOEA the crossover probability was
set to 0.9 and the mutation probability to 1/D. On each test problem
every algorithm was run 30 times.

4 RESULTS
Cumulative hypervolume of Pareto front approximations was used
to measure the quality of an algorithm run. In order to present the
entire search process, hypervolumes were calculated for each gen-
eration on an unbounded external archive storing all the nondomi-
nated feasible individuals generated until that generation. Before
the hypervolume calculation, the objective values were normalized
using the nadir and ideal points. For the artificial problems the
nadir and ideal points were known in advance, while for the three
RWPs they were estimated using all nondominated and feasible
individuals generated by all algorithms during all 30 runs. Given
fi ∈ [0, 1], reference points for hypervolume calculation were set
to (1.1, . . . , 1.1)T. Note that only feasible individuals dominating
the reference point were used to calculate the hypervolume.

The progress of cumulative hypervolume averaged over 30 runs
of every algorithm on each test problem is shown in Figure 1. As we
can see, the ensemble of CHTs performs at least as well as the best
single CHT on all the test problems. Indeed, a deeper inspection
of the results shows that the ensemble is much more robust than
any other CHT. From this observation we may conclude that the
ensemble is able to adopt to the best performing single CHTs on all
the observed problems. Moreover, the better ensemble performance
on the three RWPs clearly shows that the ensemble is able to extract
the information gathered from multiple CHTs and combine them
in a synergistic way. Especially on the vibrating platform problem
the combination of CHTs played a pivotal role for the MOEA to
find a high-quality Pareto front approximation.

After examining the obtained cumulative Pareto front approx-
imations (not shown in the paper due to the lack of space), we

Table 1: Characteristics of the test CMOPs: number of objec-
tivesM , number of constraints N , dimension of the decision
space D, feasibility ratio of the decision space experimen-
tally estimated as the proportion of feasible individuals in
105 randomly generated individuals.

CMOP M N D Feasibility ratio

SRN 2 2 2 ≈0.16
OSY 2 6 6 ≈0.03
C3-DTLZ1 3 3 7 ≈1.00
C3-DTLZ4 3 3 7 ≈0.01
C3-DTLZ1 4 4 8 ≈1.00
C3-DTLZ4 4 4 8 ≈0.01
Vibrating platform 2 5 5 ≈0.00
Car-side impact 3 10 7 ≈0.18
Water resource planning 5 7 3 ≈0.92

observed that the test problems were actually not so hard to solve.
For example, all CHTs except NDS were capable of finding good
Pareto front approximations for SRN, OSY and C3-DTLZ1. In fact,
the vibrating platform was the only problem identified as difficult
according to our results.

5 CONCLUSIONS
In this paper, we proposed a general approach to include multiple
CHTs into an ensemble-based method for constraint handling in
multiobjective optimization. In addition, we presented a modified
version of NSGA-II capable of including the ensemble during the
replacement phase. To assess the performance of our approach, we
experimented with four CHTs and the ensemble of these CHTs on
nine test CMOPs from the literature.

The experimental results show that the ensemble of CHTs is far
more robust than other CHTs and solves all test problems at least as
well as the best performing single CHT. Furthermore, on all three
RWPs the ensemble outperformed the single CHTs. Especially on
the vibrating platform, which is the hardest test problem according
to our results, the synergy of multiple CHTs was crucial for finding
a good Pareto front approximation. Nevertheless, we observed that,
contrary to general belief, CMOPs regularly used to evaluate the
performance of MOEAs can be quite easily solved.

In the future we plan to investigate whether the presented results
are statistically significant. We will also analyze the robustness of
the proposed ensemble by considering different parameter settings,
including non-uniform weights of CHTs in the ensemble, and in-
corporating additional CHTs. Finally, we will try to identify more
difficult test problems or construct new CMOP benchmarks.
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SRN (M = 2) OSY (M = 2) C3-DTLZ1 (M = 3)

C3-DTLZ1 (M = 4) C3-DTLZ4 (M = 3) C3-DTLZ4 (M = 4)

Water resource planning (M = 5) Car-side impact (M = 3) Vibrating platform (M = 2)

Figure 1: Cumulative hypervolume progresses for all the test problems, where the blue dashed line indicates NDS, the orange
solid line CDP, the purple dashed line MCR, the green solid line DPF, and the red dashed line ENS.
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