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ABSTRACT

In this work we provide a theoretical and empirical study of the
(1 + (λ, λ)) EA on the LeadingOnes problem. We prove an upper
bound of O(n2) fitness evaluations on the expected runtime for all
population sizes λ < n. This asymptotic bound does not depend on
the parameter λ.

We show via experiments that the value of λ has a small influence
on the runtime (less than a factor of two). The value of λ that
optimizes the runtime is small relative ton.We propose an extension
of the existing (1 + (λ, λ)) EA by using different population sizes in
the mutation and in the crossover phase of the algorithm and show
via experiments that this modification can outperform the original
algorithm by a small constant factor.
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1 INTRODUCTION

Although the crossover is seen as an essential part of genetic algo-
rithms (GAs), we still experience a lack of the theoretical under-
standing of this concept. The common trend of the latest years is
to fill this gap in our knowledge about the GAs, which has given
rise to a plenty of theoretical works that concentrate on finding the
reasons of the crossover usefulness.

In the early works like [8, 9, 11] the crossover is seen as a tool
that helps an algorithm to effectively leave local optima or a plateau
of the fitness function exploiting the diversity of the genotype in
the population. Although these works consider relatively artificial
functions that were designed to model some particular properties,
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they inspired other authors to consider some (simplified) real-world
problems, e.g., Ising model on rings [6] or on trees [12]. The latter
two works showed that even the most simple crossover-based algo-
rithm can asymptotically outperform the mutation-based (1 + 1)
evolutionary algorithm (EA) on those problems.

Recently Corus and Oliveto have shown in [2] that the crossover
can effectively exploit the diversity of the population and as a
consequence outperform by a constant factor any mutation-based
EA on the benchmark problem OneMax. This result was surprising,
since it was one of the first to show the efficiency of the (µ + 1) GA
on the landscapes, where hill climbers are supposed to be the most
effective algorithms.

A totally different point of view on crossover was introduced
together with the (1 + (λ, λ)) EA in [4]. This algorithm unlike any
canonical GA uses crossover after mutation as a repair mechanism.
This leads to a speedup by a superconstant factor compared to any
mutation-based algorithm on the OneMax problem. The further
research in [3] has shown that with some parameter adaptation
mechanism this algorithm can optimize OneMax in a linear time
(in terms of the number of fitness evaluations) which at the moment
is the best known performance for the algorithms that use only
binary unbiased operators [5].

The empirical study of the (1 + (λ, λ)) EA is not so unambigu-
ously optimistic. On the one hand it was empirically shown that the
(1 + (λ, λ)) EA is effective on different linear functions, royal road
function and some instances of the maximum satisfiability problem
in [7]. On the other hand, the other experiments presented in [10]
show that the (1 + (λ, λ)) EA is outperformed by the (1 + 1) EA on
the problem of the hard-test generation.

To achieve a better understanding of the crossover mechanism,
we study the (1 + (λ, λ)) EA on the LeadingOnes problem. The
(1 + (λ, λ)) EA is already well-studied on the problems with a strong
fitness-distance correlation (such as OneMax) and has shown good
performance on such problems. However, there are no such results
for problems with weak fitness-distance correlation. In this paper
we aim to show that (1 + (λ, λ)) EA perfoms at least as good (in
asymptotical sense) as (1 + 1) EA on the LeadingOnes.

The rest of the paper is organized as follows. In Section 2we intro-
duce the notation that we use in the paper and state the problem. In
Section 3 we prove that the expected number of fitness evaluations
before the (1 + (λ, λ)) EA reaches the optimum of LeadingOnes is
O(n2) for any λ < n. In Section 4 we inspect the influence of the
parameter λ on the leading constant in the expected runtime. We
also propose an improvement of the (1 + (λ, λ)) EA and provide an
empirical study of its performance on LeadingOnes.
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2 PRELIMINARIES AND NOTATION

2.1 Notation

We write [a..b] to denote an integer interval including its borders
and (a..b) to denote an integer interval excluding its borders.

By H (x,y) we denote the Hamming distance between bit-strings
x and y.

For any probability distribution L and random variable X , we
write X ∼ L to indicate that X follows the law L. We denote the
binomial law with parametersm ∈ N and p ∈ [0, 1] by Bin(m,p).

2.2 Problem Statement

We analyze the (1 + (λ, λ)) EA, that is a crossover-based evolution-
ary algorithm, on the pseudo-Boolean functions. This algorithm
has a parameter λ that can be adjusted during the run [3], however
in our work we focus on a stationary value of λ that may be any
integer in [2..n − 1], where n is the dimension of the search space.
Note that we omit λ = 1, since in this case the (1 + (λ, λ)) EA turns
into the (1 + 1) EA, which is already well-studied.

The (1 + (λ, λ)) EA stores a bit-string x that is initialized with a
random bit-string. After the initialization it performs iterations that
consist of the mutation phase and the crossover phase until some
stopping criterion is met. In the mutation phase the algorithm first
chooses the mutation strength ℓ from the binomial distribution with
parameters n and λ

n . Then it creates λ mutants x (1), . . . , x (λ), each
of them is a copy of x with exactly ℓ bits flipped. The positions of the
flipped bits are chosen uniformly at random, independently for each
mutant. The mutant with the best fitness is chosen as the winner of
the mutation phase x ′. In the crossover phase the algorithm creates
λ offspring y(1), . . . ,y(λ) by applying a biased crossover to x and x ′
(independently for each offspring). The crossover operator for each
position takes a bit value from x with probability λ−1

λ and it takes
a bit value from x ′ with probability 1

λ (independently for each posi-
tion and each offspring). If the best offspring y is not worse than x
then it replaces x . The pseudocode of the (1 + (λ, λ)) EA optimizing
some pseudo-Boolean function f is shown in Algorithm 1.

Our research focuses on the optimization of the LeadingOnes
function, that returns the position of the first zero-bit in its argu-
ment. Note that in this paper we count bit positions in a bit string
starting with zero. More formally, the LeadingOnes is defined as

LeadingOnes(x) =
n−1∑
i=0

i∏
j=0

x j .

For brevity we denote the LeadingOnes by f and in the rest of
the paper by the fitness function we mean the LeadingOnes. The
value of f on a bit-string x is the fitness of x .

3 RUNTIME ANALYSIS

In this section we denote by i the current fitness, that is, f (x). The
main idea of our proof is to show that the mutation phase winner
x ′ has the i-th bit equal to one with probability Ω( λn ). Afterwards,
we prove that there is at least a constant probability to generate
an offspring y such that the i-th bit of y is taken from x ′ and all
other bits that differ in x and x ′ are taken from x . For the latter
estimate to hold we assume that ℓ does not exceed 2λ+1. Combining

Algorithm 1: The (1 + (λ, λ)) EA maximizing f :
{0, 1}n → R
1 x ← random bit string of length n;
2 while not terminated do

3 Mutation phase:

4 Choose ℓ following Bin(n, λn );
5 for i ∈ [1..λ] do
6 x (i) ← a copy of x ;
7 Flip ℓ bits in x (i) chosen uniformly at random;
8 end

9 x ′ ← argmaxz∈{x (1), ...,x (λ) } f (z);
10 Crossover phase:

11 for i ∈ [1..λ] do
12 y(i) ← a copy of x ;
13 Flip each bit in y(i) that is different in x ′ with

probability 1
λ ;

14 end

15 x ← argmaxz∈{y (1), ...,y (λ),x } f (z);
16 end

the estimations and applying the method of artificial fitness levels
from [13] we get an upper bound on the expected runtime ofO(n2

λ )

iterations.

3.1 Mutation Phase

In this section we estimate the probability to obtain an individual
with the i-th bit flipped as the winner of the mutation phase.

For that purpose, we notice that when we consider one par-
ticular individual x (m) generated in the mutation phase, we can
omit the process of first choosing ℓ ∼ Bin(n, λn ) and then flipping
ℓ random bits, but assume that we apply a standard bit mutation
with probability λ

n to flip each bit, since the distribution over all
possible outcomes is the same for these two mutation operators.
We regard the two cases of the outcome of this mutation operator
in Lemmas 3.1 and 3.2.

Lemma 3.1. Let x (m) be some particular offspring generated in the
mutation phase. Then the probability that the the i-th bit is flipped in
x (m) and the total number X of the bits that were flipped in x (m) is at
most 2λ+ 1 conditional on f (x (m)) = j < f (x) is at least (1−e−

λ
3 ) λn .

Proof. We use the definition of the conditional probability to
estimate

Pr
[
x
(m)
i = 1 ∩ X ≤ (2λ + 1) | f (x (m)) = j < f (x)

]
=

Pr
[
x
(m)
i = 1 ∩ X ≤ (2λ + 1) ∩ f (x (m)) = j < f (x)

]
Pr

[
f (x (m)) = j < f (x)

] .

(1)

We assume that x (m) was obtained through a standard bit muta-
tion with mutation rate λ

n . Hence, denoting by X
′ the number of

flipped bits in positions (j ..n) \ {i} we estimate the probability in
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the numerator as(
λ

n

)2 (
1 − λ

n

) j
Pr [X ′ ≤ (2λ − 1)], (2)

since for this outcome we need to flip bits i and j, not to flip bits
[0..j) and not to flip more than (2λ−1) bits in othern−j−2 positions.
Note that X ′ ∼ Bin(n − j − 2, λn ) and is dominated by Bin(n, λn ).
Therefore, by Chernoff bounds we have

Pr [X ′ ≤ (2λ − 1)] = 1 − Pr [X ′ ≥ 2λ] ≥ 1 − e−
λ
3 . (3)

We also estimate the probability in the denominator of (1) as

λ

n

(
1 − λ

n

) j
, (4)

since for this outcome we only need to flip bit j and not to flip bits
in positions [0..j). By putting (2), (3) and (4) into (1) we obtain

Pr
[
x
(m)
i = 1 ∩ X ≤ (2λ + 1) | f (x (m)) = j < f (x)

]
≥

λ

n

(
1 − e−

λ
3
)
. □

Lemma 3.2. Let x (m) be some particular offspring generated in the
mutation phase. Then the probability that the the i-th bit is flipped in
x (m) and the total number X of the bits that were flipped in x (m) is
at most 2λ + 1 conditional on f (x (m)) ≥ f (x) is at least (1 − e−

λ
3 ) λn .

We omit the proof for reasons of space and since it generally
replicates the proof of Lemma 3.1.

From Lemma 3.1 and Lemma 3.2 we conclude that we have two
options. The winner of the mutation phase can have fitness j that
is less than f (x) and then with probability (1 − e−

λ
3 ) λn we flipped

no more than 2λ + 1 bits, but surely flipped the i-th bit in it. Or the
winner is at least as good as x and then it has no more than 2λ + 1
bits flipped and the i-th bit surely flipped with the same probability.
So independently of the selection, we have

Pr[x ′i = 1 ∩ H (x, x ′) ≤ (2λ + 1)] ≥
(
1 − e−

λ
3
) λ
n
.

3.2 Crossover Phase

Nowwe consider the probability to obtain progress in the crossover
phase. For that purpose we estimate the probability to get y such
that yi is a one-bit and none of other bits are changed compared
to x (and hence we increase the fitness by at least 1). We estimate
the probability to obtain progress in one particular offspring in the
following lemma.

Lemma 3.3. Assume that x ′i = 1 and the Hamming distance be-
tween x and x ′ is at most 2λ+ 1. Then for any offspring y(m) we have
Pr[f (y(m)) > f (x)] is at least 1

16λ .

Proof. To obtain an offspring y(m) that is better than x we can
take bit i from x ′ with probability 1

λ and take all other 2λ bits that

differ in x and x ′ from x with probability (1 − 1
λ ) each. Therefore,

we have

Pr[f (y(m)) > f (x) | x ′i = 1 ∩ H (x, x ′) ≤ 2λ + 1]

≥
1
λ

(
1 − 1

λ

)2λ
≥

1
16λ . □

The winner of the crossover phase y is strictly better than x , if
at least one offspring y(m) is better than x . Hence, we have

Pr[f (y) > f (x) | x ′i = 1 ∩ H (x, x ′) ≤ (2λ + 1)] ≥ 1 −
(
1 − 1

16λ

)λ
≥ 1 − e−

1
16 .

3.3 Upper bound summary

In order to apply the method of artificial fitness levels, for all i ∈
[0..n]we define the levelAi as a set of all bit-strings of lengthnwith
the value of LeadingOnes equal to i . We note the the probability
to leave each level is at least the probability that we create x ′ such
that x ′i = 1 and H (x, x ′) ≤ 2λ + 1 multiplied by the probability to
create y that is better than x conditional on this event. We estimate
such probability as

pi ≥
(
1 − e−

λ
3
) (

1 − e−
1
16
) λ
n
.

Through the method of artificial fitness levels we compute

E[T ] ≤
n−1∑
i=1

1
pi
≤

n−1∑
i=1

(
1 − e−

λ
3
)−1 (

1 − e−
1
16
)−1 n

λ

=
(
1 − e−

λ
3
)−1 (

1 − e−
1
16
)−1 n2

λ
.

Therefore, we have the estimate of O(n2

λ ) iterations to optimize
LeadingOnes function with (1 + (λ, λ)) EA which gives us O(n2)
fitness evaluations, since we perform exactly 2λ fitness evaluations
per iteration.

4 EXPERIMENTAL STUDY

In this section we introduce the results of our empirical analysis.
The main purpose of this section is to investigate how different
values of λ affect the runtime. Therefore we hold n constant and
equal to 512 whilst varying λ from 20 = 1 to 28 = 256.

In Figure 1 one can see that generally for different values of λ
the runtime of the (1 + (λ, λ)) EA differ from the runtime of the
(1 + 1) EA not more than by a factor of two. However, for the small
values of λ it outperforms (1 + 1) EA. In particular, for the optimal
value λ = 4 its runtime is less by about 25%, compared by the
median values. On the other hand, despite the good performance
on the small values of λ the runtime of the (1 + (λ, λ)) EA gets
slightly worse with the parameter growth. We assume that the
reason for such behavior is that for the small values of λ it is easier
to make x ′ that is better than x than to make x ′ that is worse, but
with the i-th bit flipped. This gives us much better chances to obtain
a better individual in the crossover phase.

Looking for the ways of improving the algorithmwe noticed that
if we disregard selection after the mutation phase then every off-
spring at the crossover phase is generated via standard bit mutation
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Figure 1: The distributions of the 1024 runtimes of the

(1 + (λ, λ)) EA on LeadingOnes with n = 512 for various val-
ues of the parameter λ.With λ = 1 the (1 + (λ, λ))EA is simply

the (1 + 1) EA.

with mutation rate equals to λm
nλx

, where λm and λx are values for
the parameter λ at the mutation and crossover phases respectively.
Since the optimal mutation rate was shown to be approximately
1.59
n in [1], we assumed that it could be profitable to use different

values for the λm and λx . However, both λm and λx are integer
values, so we define λm = 2λx , which gives us a mutation rate that
is close to the optimal one. As one can see in Figure 2 for the small-
est values of λ such approach outperforms ordinary (1 + (λ, λ)) EA
with optimal value of λ = 4 by a small constant factor.

5 CONCLUSION

In this work we proved an upper bound ofO(n2) fitness evaluations
for the (1 + (λ, λ)) EA on the LeadingOnes problem. This result
shows that the (1 + (λ, λ)) EA is asymptotically at least as efficient
as the (1 + 1) EA on this problem. Our empirical study has revealed
that for relatively small values of λ the (1 + (λ, λ)) EA outperforms
the (1 + 1) EA by a small constant factor.

The most interesting way of the further theoretical work is to
prove the matching lower bound, however so far it seems to be a
challenging problem. The empirical research has a plenty of further
directions, which includes a tuning of the different parameters of
the (1 + (λ, λ)) EA, such as the mutation strength, the crossover
biasness and the population sizes on each phase. Finding an optimal
interplay between these parameters may become fruitful for the
development of new crossover-based algorithms.
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Figure 2: The distributions of the 1024 runtimes of the

(1 + (λ, λ)) EA on LeadingOnes with n = 512 for various val-
ues of the parameters λx and λm = 2λx .
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